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ABSTRACT

In many scientific and engineering domains, inferring the effect of treatment and exploring its
heterogeneity is crucial for optimization and decision making. In addition to Machine Learning based
models (e.g. Random Forests or Neural Networks), many meta-algorithms have been developed to
estimate the Conditional Average Treatment Effect (CATE) function in the binary setting, with the
main advantage of not restraining the estimation to a specific supervised learning method. However,
this task becomes more challenging when the treatment is not binary. In this paper, we investigate the
Rubin Causal Model under the multi-treatment regime and we focus on estimating heterogeneous
treatment effects. We generalize Meta-learning algorithms to estimate the CATE for each possible
treatment value. Using synthetic and semi-synthetic simulation datasets, we assess the quality of each
meta-learner in observational data, and we highlight in particular the performances of the X-learner.

Keywords Machine Learning · Causal Inference · Multiple Treatments · Heterogeneous Effects.

1 Introduction

With the rapid development of Machine Learning (ML) and its efficiency in predicting outcomes, the question of
counterfactual prediction "what would happen if ?" arises. Engineers may want to know how the outcome (e.g.
production) would be affected when a parameter is changed to a specific value. It will help them personalize the
parameter at efficient levels and optimize the outcome, either on average or on a smaller scale (sub-groups of units).
Recently, many companies have relied on ML models to find the optimal intervention strategy. Yet, the results are not
satisfactory. Indeed, these models do not account for other impacting effects (One-At-a-Time approach) and cannot
distinguish between correlations and causal relationships in the data. For instance, Li et al. (2016) have quantified the
impact of increasing number of stages on Enhanced Geothermal System (EGS) performance using sensitivity analysis.
The results are, however, completely different from what ML models predict.

Based on the Potential Outcomes theory (Neyman, 1923; Rubin, 1974), epidemiologists and statisticians developed
a set of statistical tools to make causal inference and estimate the effects of a treatment on the outcome whether on
average among the whole population or inside different sub-groups. They have been successfully applied in many fields
such as medicine (Foster et al., 2011; Shalit et al., 2017; Alaa and van der Schaar, 2017), economics (Knaus et al., 2020;
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Jacob, 2021), public policy (Imai and Strauss, 2011; Turney and Wildeman, 2015), and advertising/marketing (Bottou
et al., 2013; Li et al., 2015; Diemert et al., 2018). Nevertheless, they are still unfamiliar and seldom used in industrial
applications.

Further, most existing methods and studies are limited to the setting of a binary treatment, whereas in many real-world
applications, the treatment variable can take multiple values. In some cases, it would be helpful to give an in-depth
analysis of the impact of the treatment across its possible levels (doses) instead of just considering a binary scenario
where the treatment is either assigned or not. In addition, the heterogeneity of effects may provide valuable information
regarding the effectiveness of this treatment and help individuals, companies or governments to personalize their policies
and strategies.

Finally, randomized controlled trials (RCT) are not always conducted, and the ground truth of treatment effects cannot
be observed and is rarely available. This fact makes Heterogeneous Treatment Effects estimation different from a
standard supervised learning problem (Alaa and van der Schaar, 2018). Therefore, it is challenging to assess treatment
effect estimators performance and select the best model with standard point-wise error metrics such as Mean Squared
Errors.

In this work, we study the problem of estimating Heterogeneous Treatment Effects, also known as Conditional Average
Treatment Effects (CATEs), when the treatment is multi-valued. We put our focus on establishing plug-in estimators,
also referred as meta-learners (Künzel et al., 2019) or model-agnostic algorithms (Curth and van der Schaar, 2021a),
that estimate the CATE with any supervised ML model. This task can be achieved either by modelling the CATE directly
in one step or two steps: by decomposing it into regularized regression problems or by addressing a minimization
problem with respect to an appropriate loss function.

Contributions. The main contributions of this paper can be summed up as follows. First, we generalize the notion of
meta-learners in the multi-treatment setting to estimate CATEs. We propose adapted representations of the outcome (i.e.
pseudo-outcome) to learn the CATE efficiently in observational studies. Second, using a generalization of Robinson
(1988) decomposition, we propose an approach of R-learning, and we form an objective function that captures causal
effect. Finally, we evaluate our meta-learners on synthetic datasets and a semi-synthetic dataset simulating a geothermal
system. This dataset covers all possible scenarios and serves as a baseline to compare the obtained counterfactual
predictions with the ground truth response.

The remainder of the paper is structured as follows. Section 2 introduces related work. Section 3 presents problem setup
about the CATE estimation. In Section 4 we provide a theoretical setup of CATEs estimators (Meta-learners) when the
treatment is multi-valued. We present empirical evaluation results in Section 5. Finally, we conclude in Section 6 with a
discussion.

2 Related work

Meta-learners for CATEs estimation. The recent interest and advances in CATEs estimation have led to the
development of numerous algorithms (see Caron et al. (2021) for a review). Some of them incorporate ML through
modified models (Hill, 2011; Hahn et al., 2020; Alaa and van der Schaar, 2017; Athey et al., 2019; Yoon et al.,
2018; Fan et al., 2020) while others, known as meta-learners, do not require a specific ML method. The theory of
meta-learners was initially introduced and discussed by Künzel et al. (2019) for the CATE estimation in the binary
setting. Three learners have been considered in their work: the S-learner, the T-learner and the X-learner. Kennedy
(2020) proposes the DR-learner (doubly robust) using the augmented inverse propensity weighted (AIPW) outcome to
overcome the problem of model misspecifications when estimating nuisance functions (e.g. the propensity score and
outcome models). Nie and Wager (2020) presents R-learner that estimates the CATE by minimizing the squared error
loss based on orthogonalization with respect to both observed outcome and propensity score estimate. Curth and van der
Schaar (2021a) consider PW-learner (propensity weighting learner), borrowed from the inverse probability weighting
transformation as considered by Athey and Imbens (2016), and RA-learner (regression adjustment learner), which is an
improved version of the X-learner. They also suggest categorization of meta-learners by dividing them, excluding the
R-learner, into two categories: one-step plug-in estimators, which are learners that estimate two regression functions
then estimate the CATE as a difference of these functions (T- and S-learners), and two-step plug-in learners (RA-,
PW- and DR-learners), that estimate the previous nuisance functions then target the CATE directly by regressing a
pseudo-outcome. They show that, under some conditions, two-step learners can attain the oracle rate.

Multiples and continuous treatments. Recent years have seen a growing interest in developing causal inference
methods with multi-valued treatments using observational data. The theoretical work of Imbens (2000); Lechner (2001);
Frölich (2002); Imai and Dyk (2004) extended the potential outcome framework and the propensity score in the general

2



Estimating Heterogeneous Treatment Effects under multiple treatment regime

treatment setting, including also continuous treatments. Nonetheless, most studies focus on the average treatment
effect (Flores, 2007; Zhu et al., 2015; Saini et al., 2019; Colangelo and Lee, 2021; Nie et al., 2021) only a few of
them handle heterogeneous treatment effects. Heiler and Knaus (2021) show that binarizing multi-treatments can lead
to a spurious estimation of heterogeneous effects across different levels. Schwab et al. (2020), followed by Harada
and Kashima (2021), considered graph-structured treatments and representation learning approaches to present a ML
approach using neural networks to estimate individual dose-response curves for multi-treatments. Freshly, Kaddour
et al. (2021) proposed Structured Intervention Networks (SIN), a representation learning that uses the generalized
Robinson decomposition for estimating CATEs of structured treatments. This work is close to the R-learning approach
in subsection 4.4.

3 Problem formulation

To address the problem of inferring causal effects when the treatment is not binary but has at least three possible values,
we follow the potential outcome theory (Rubin-Neyman model) as extended to the multi-treatment regime by Imbens
(2000); Lechner (2001); Frölich (2002); Imai and Dyk (2004) and we consider the following statistical problem.

Following the potential outcomes framework, we suppose the existence of Y (t), the real-valued counterfactual outcome
that would have been observed under treatment level t ∈ T = {t1, . . . , tK}. We consider (X, T, Y (t)t∈T ) ∼ P where
X = (X(1), . . . , X(d)) ∈ Rd denotes a random vector of covariates and T denotes the treatment assignment random
variable. We suppose finally that we observe data drawn from independent and identically distributed sample of n units
Dobs,i = (Xi, Ti, Yobs,i) distributed as (X, T, Yobs) with Yobs = Y (T ) (consistency assumption).

Note that the distribution of the observed sample Dobs = (Dobs,i)
n
i=1 is not representative of the whole population due

to selection bias, standing for the fact that covariates variables affect units’ treatment assignment. This dependence is
usually quantified by the generalized propensity score r(t,x) := P(T = t|X = x) (Imbens, 2000). This parameter
has the same balancing propriety as the classical Propensity Score (Rosenbaum and Rubin, 1983). It is widely used to
remove confounding bias in observational studies to get the RCT setting where X and T are independent.

We aim to infer the effect of the treatment T on the outcome Y . More precisely, we want to estimate the CATE between
two levels of treatment T = t1 and T = t, defined as

τt(x) = E(Y (t)− Y (t1)|X = x), (1)

which can be interpreted as is the expected treatment effect between levels T = t1 (defined as baseline treatment value)
and t for an individual with covariates X = x.

Unfortunately, it is impossible to infer this effect directly. We observe only one potential outcome corresponding to the
potential outcome receiving the treatment T (i.e. the real outcome) for every unit. All other potential outcomes are
missing (inherently unobservable). This is known as the fundamental problem of causal inference (Holland, 1986).
Consequently, to identify the causal effects from the observed sample data, we shall consider the following assumptions
(Assumption 3.1 is unfortunately untestable)
Assumption 3.1. Unconfoundedness: The treatment mechanism is unconfounded given the observed covariates
Y (t) |= 1{T = t} | X for all t ∈ T .
Assumption 3.2. Overlap: the probability of receiving the treatment given observed covariates is positive i.e. there
exists rmin > 0 such that rmin ≤ r(t,x) = P(T = t|X = x).

With the previous assumptions, the expected potential outcome satisfies E(Y (t) | X = x) = E(Yobs | T = t,X = x)
and the CATE can be identified as non-parametric estimation problem.

The problem of the CATE estimation can be seen as a non-parametric estimation problem. However, this paper does not
consider the discussion about model-fitting and the best strategy for learning.

4 Meta-learners in the multi-treatment regime

To tackle the problem of estimating CATEs under multi-valued treatment, we generalize the notion of meta-learners
to derive consistent estimators of the CATE. Moreover, all considered meta-learners below, except the R-learner, can
support any supervised regression ML method (e.g. random forest, gradient boosting methods). These ML methods are
called base-learners when applied to a meta-learner.

In the following, we follow a similar taxonomy of CATEs estimators as Curth and van der Schaar (2021a); Knaus
et al. (2020). Namely, direct plug-in (one step) meta-learners, pseudo-outcome (two-step) meta-learners and Neyman-
Orthogonality based learners (R-learner).
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4.1 Direct plug-in meta-learners

In this subsection, we present direct plug-in meta-learners, also known as one-step learners that estimate the CATE in
(1) by targeting directly the observed data Dobs.

T-learner with multiple treatments. The T-learning is naive approach of learning the CATE. It consists on estimating
the two conditional response surfaces µw(x) = E(Y (w) | X = x) using Sw = {i, Ti = w} for w ∈ {t, t1} as in
the binary case. Basically, the T-learning approach does not account for the interaction between treatment T and the
outcome Y and create different models for different treatments.

Despite its naivety, the T-learning approach may suffer from selection bias (Curth and van der Schaar, 2021b), that is,
when the outcome models µw are estimated with respect to the wrong distribution of the training sample. To overcome
this issue in the estimation of µw while sampling (Dobs,i)i∈Sw , we use Importance Sampling (Hassanpour and Greiner,
2019), and we show the following proposition.

Proposition 4.1. For a treatment level w ∈ T , the expected squared error of the estimator µ̂w on the outcome surface
µw satisfies :

EX∼P(·)
[
(µ̂w(X)− µw(x))

2
]
=

EX∼P(·|T=w)

[
P(T = w)

r(w,X)
(µ̂w(X)− µw(X))2

]
.

The proposition 4.1 highlights the fact that µw should be estimated by minimizing the expected squared error on the
nominal weighted distribution.

Therefore, the T-learner the in multi-treatment setting can be built as follows

• For w ∈ {t, t1}, sample (Dobs,i)i∈Sw
and estimate the conditional response µ̂w by minimizing the expected

squared error of the estimator µ̂w.
• Compute the CATE between two treatment levels t and t1 by τ̂ (T)

t (x) = µ̂t(x)− µ̂t1(x).

S-learner with multiple treatments. Using the identification of the CATE by assumptions (3.1)-(3.2) : τt(x) =
E(Yobs | T = t,X = x)− E(Yobs | T = t1,X = x). Therefore, instead of splitting the dataset and building separate
models as in T-learning, one can consider a single model built from the whole dataset and define naturally the S-learner
in case of the multi-treatment setting as

• Regress Yobs on the treatment T and the covariates X by a single model µ̂ using Dobs.
• Estimate the CATE between two treatment levels t and t1 by τ̂ (S)t (x) = µ̂(x, t)− µ̂(x, t1).

Obviously, including the treatment T as an input feature and sharing some information between covariates X and T
may provide better predictions. However, this result is conditioned by the ability of the regression model to capture and
distinguish contributions of both X and T on Yobs.
Remark. Even though E(Y (t) | X = x) = E(Yobs | T = t,X = x), it is very important to keep in mind the
distinction between the S- and T-learning. The T-learner regresses on X for t fixed whereas the S-learner regresses on
both T and X .

In the binary cases, the S-learner is usually considered as a good choice Künzel et al. (2019); Curth and van der Schaar
(2021b) and have shown its performance. Although, as we will see in Section 5.1, its results are very sensitive to the
base learner, particularly for random forests because it cannot capture the correct effect of the treatment variable.

Note that the S-learning approach may also suffer from the same regularization bias (Chernozhukov et al., 2018; Hahn
et al., 2020) as the T-learning approach when estimating the counterfactual response model µ̂ .

4.2 Pseudo-outcome meta-learners

Despite the purpose of Proposition 4.1 for overcoming selection bias, it implies learning in low samples, which may
harm them when Sw becomes small for a certain w. This is all the more critical as the number K of treatments increases.
An alternative (and usual) possibility for mitigating this bias is to consider some specific representations of the observed
outcome Yobs, called pseudo-outcome. These representations incorporate nuisance components that generally include
valuable information such as the dependence between covariates X and T (i.e. the GPS) and the occurrence of a
particular treatment assignment. Further, regressing the pseudo-outcome produces a new regularized estimator that
predicts the right treatment effect instead of predicting a biased effect while keeping the same sample size as Yobs.
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Algorithm 1 Pseudo-outcome meta-learning estimation

Input: data (Xi, Ti, Yobs,i), level t, model τ , Components r̂, µ̂·.
if Components not provided then

Estimate r̂ by regressing T on X .
Estimate µ̂· by T-learning or S-learning.

end if
Zt,i = Transformation(t, Xi, Ti, Yobs,i, r̂, µ̂·)
Regress Zt on X using τ .
Output: Learned model τ̂ .

The algorithm 1 summarizes CATEs estimation using the previous meta-learners. The "Transformation" function
stands for the pseudo-outcome transformation that has been applied to Yobs in the following M-, DR- and X-learning
approaches.

M-learner with multiple treatments. The M-learner (Athey and Imbens, 2016), where M- stands for the modified
learned pseudo-outcome, is inspired from the Inverse Propensity Weighting (IPW) transformation. This representation
is initially proposed by Horvitz and Thompson (1952) to the mean estimator, then presented by Rosenbaum (1987) as a
form of model-based direct standardization for the inference of causal effects.

Let t ∈ T be a treatment level, we define the modified pseudo-outcome ZM
t in the multi-treatment regime using the

IPW representation as

ZM
t =

1{T = t}
r(t,X)

Yobs −
1{T = t1}
r(t1,X)

Yobs, (2)

where r(t,x) = P(T = t | X = x) is the GPS defined previously.

Proposition 4.2. Under the assumptions (3.1)-(3.2)

E(ZM
t | X = x) = τt(x).

Unfortunately, the M-learner is very sensitive to the estimation of the GPS and suffers from high variance, even when
the propensity score is correctly specified or known and constant Curth and van der Schaar (2021a). Moreover, the
modified pseudo-outcome can be null often, which also can lead to an over-fitting problem as the base-learner may try
to predict zero instead of predicting τt. Again, this becomes more critical as the number K of treatments increases as
some values can be smaller than 1/K.

DR-learner with multiple treatments. Requiring the consistency of the GPS estimator may be a hard condition to
get a correct estimation of CATEs. The Doubly Robust (DR) method was suggested by Robins et al. (1994) then by
Kennedy (2020) to overcome the problem of model’s misspecification by estimating two components, the outcome
model µt and the GPS r, instead of relying on the correctness of one (and the only) parameter.

Let µ denote an arbitrary model of the outcome µ, let r denote also an arbitrary model of the GPS r, we assume that r
respects also Assumption (3.2). For t ∈ T , we define doubly-robust pseudo-outcome ZDR

µ,r,t as

ZDR
µ,r,t =

Yobs − µT (X)

r(t,X)
1{T = t} − Yobs − µT (X)

r(t1,X)
1{T = t1}

+ µt(X)− µt1(X).

(3)

Proposition 4.3. Let ZDR
µ,r,t be the Doubly-Robust pseudo-outcome defined in (3), then under the assumptions (3.1)-(3.2)

E(ZDR
µ,r,t | X = x) = τt(X)

if the outcome models or the propensity model is well-specified, i.e. µt(X) = µt(X) and µt1(X) = µt1(X) almost
surely, or r(X) = r(X) almost surely.

Therefore, the consistency of the DR-learner is achieved if at least one of the components (the propensity score model
or outcome models) is well-specified. It also has the advantage of having a small asymptotic variance compared to the
M-learner when the propensity score model is correct, as it will be shown in Appendix and Section 5.1.
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X-learner with multiple treatments. The X-learner Künzel et al. (2019), also known as Regression-Adjustment
(RA)-learning in a developed version by Curth and van der Schaar (2021a), has been proposed as an alternative to
the T-learning in the case where one treatment group is over-represented. The idea consists in a cross procedure of
estimation between observations Yobs and outcome models when one of the treatments occurs.

In the multi-treatment regime, for t ̸= t1 ∈ T , we define the Regression-Adjustment pseudo-outcome ZX
t as

ZX
t = 1{T = t}(Yobs − µt1(X)) +

∑
t′ ̸=t

1{T = t′}×

(µt(X)− Yobs) +
∑
t′ ̸=t

1{T = t′}(µt′(X)− µt1(X)).
(4)

Proposition 4.4. Under the assumptions (3.1)-(3.2)

E(ZX
t | X = x) = τt(x).

Remark. The X-learning approach provides also a new method for estimating the difference of Average Dose-Response
Function (ARDF) η(t) = E(Y (t)− Y (t1)).

In opposition to the DR-learner, the pseudo-outcome ZX
t incorporates only potential outcome models and does not

imply the GPS r. Consequently, the X-learner is likely to have the smallest variance compared to other meta-learners
when the GPS takes some extreme values (i.e. the overlap assumption (3.2) is not sufficiently respected). However, it
requires the consistency of all components (µ̂t)t∈T to estimate correctly the CATE.

4.3 Error estimation of pseudo-outcome meta-learners.

Seemingly, pseudo-outcome learners need to estimate components parameters on the same data Dobs. Consequently,
the pseudo-outcomes representations may, unfortunately, lead to higher variance (i.e. expected squared error) and poor
performance in the way how these components intervene. In Appendix B, we analyze the estimation’s error estimation
of pseudo-outcome meta-learners and the variance upper bound of each meta-learner. It appears that:

• Without any surprises, the M-learner has the largest variance and its variance upper bound is constant.
• As the GPS is present in the denominator of the upper bounds of both M-learners and DR-learners. The

variance is likely to be high when there is a lack of overlap in the propensity score, i.e. rmin → 0.
• The upper bounds of the X-learner and DR-learner depend on the potential outcomes model’s estimation

quality. One can expect that the more outcome models are precise, the lower the variance is.

M-learner vs DR-learner. If the potential outcome models are well-specified, the variance’s upper bound is expected
to be lower for the DR-learner. Controversially, suppose the outcome models are misspecified (but the propensity score
is well-specified). In that case, there is no guarantee that the DR-learner would perform better than M-learner, and it
may perform even worse, as we will see in some numerical results in Table 9 in Appendix D.

X-learner vs DR-learner. It is difficult to anticipate which meta-learner would perform better. This depends mainly
on the expected squared error of µw, K and rmin, whom, in some cases, make the X-learner having less error than the
DR-learner, and the opposite in other cases. Still, numerical results in Appendix D (Tables 4, 9, 11 and 13) show that
the X-learner outperforms the DR-learner when the nuisance components are exact.

4.4 R-learning approach

Being processing in two steps, the R-learner was proposed by Nie and Wager (2020) to estimate heterogeneous
treatment effects in the binary setting: Estimating nuisance components then estimating the effects by minimizing a loss
function (model-fitting). The R-learner is based mainly on the Robinson (1988) decomposition to provide a flexible
estimator avoiding regularization bias, with strong convergence rates. Principally, the R-learner achieves approximately
asymptotic error rates as an "oracle" learner knowing the nuisance parameters perfectly.

The following proposition, which is slightly different from the work of Kaddour et al. (2021), aims to generalize the
Robinson (1988) representation in the multi-treatment setting without assuming Product Decomposition of Yobs.

Proposition 4.5. In the multi-treatment regime, let ϵ be the outcome model error

ϵ = Yobs −
∑
t∈T

1{T = t}µt(X) = Yobs − µT (X)
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Then ϵ satisfies E(ϵ | T,X) = 0 (Neyman Orthogonality) and the decomposition

ϵ = Yobs −m(X)−
∑

t̸=t1∈T

(
1{T = t} − r(t,X)

)
τt(X)

where m(x) = E(Yobs | X = x) is the observed outcome model, r(t,x) = P(T = t | X = x) is the GPS.

As described in the original paper of Nie and Wager (2020), the main interest of the previous decomposition relies on
forming a pseudo-outcome error, implying only the regression of observed quantities on X (i.e. the observed outcome
model m and the GPS r), that isolates CATEs τt for all t ̸= t1. The generalized Robinson decomposition is relevant for
two reasons. Firstly, setting up an error to minimize that allows us to target CATEs models τt directly Kaddour et al.
(2021). Secondly, requiring the observed outcome model is less restrictive than requiring potential outcome models µ.

as in the DR- and X- pseudo-outcomes.

In the multi-treatment regime, considering the mean squared error of ϵ as loss function and minimizing it implies
estimating simultaneously K − 1 models {τt}t ̸=t1∈T such that

{τ̂ (R)
t }t ̸=t1∈T = argmin

{τt}t ̸=t1
∈F

1

n

n∑
i=1

[
(Yobs,i − m̂(Xi))−

∑
t̸=t1∈T

(
1{Ti = t} − r̂(t,Xi)

)
τt(Xi)

]2
,

(5)

where m̂ (respectively, r̂) is an estimator of m (respectively, r) and F is the space of candidate models [{τt}t ̸=t1 ].

Still, the major difficulty with our R-learning approach in the multi-treatment regime comes from the fact that Problem
(5) cannot be written similarly as weighted supervised learning problem with a specific pseudo-outcome. Therefore,
only parametric families F can be considered in the multi-treatment regime.
Proposition 4.6. Let assume that τt belongs to the family of linear regression models, then Problem (5) admits at least
a solution, given by Ordinary Least Squares estimator.
Proposition 4.7. Let assume that τt belongs to the Reproducing Kernel Hilbert Space (RKHS) with a reproducing
kernel k and hyperparameters (σ2,θ), then Problem (5) admits at least a solution, whose regression coefficients are
given by Ordinary Least Squares estimator and optimal hyperparameters are solved numerically.

We note that the kernel regression method is heavy to solve (cost of O(n3K3) at each iteration). Thus, we do not
present its results in Section 5 and limit ourselves only to R-learners derived from linear regression.

5 Experiments and numerical results

We remind that our main goal is to build models able to estimate CATEs as precise as possible for the in-sample
counterfactual prediction (i.e. for the same observed covariates X but different treatment level T ) but also, ideally,
for out-sample counterfactual prediction for decision-making purposes. However, as mentioned in Section 2, even
the task of in-sample prediction is still difficult as realizations of the true CATE τt are not observable, thus, accurate
performance estimation is difficult. Therefore, training our models on sample Dobs and predicting on the same sample
is quite different from standard in-sample prediction and seems somehow as an out-sample prediction if compared to
classical supervised regression problem.

Metric. In the examples where the potential outcome functions and/or CATEs are a priori known (see subsections 5.1
and 5.2), the error in estimation is given by mPEHE, the mean of the Precision in Estimation of Heterogeneous Effect
(PEHE) (Hill, 2011; Shalit et al., 2017) defined as the mean squared error in the estimation of the treatment effect τ̂t,
over all possible treatment levels t ∈ T \ {t1} :

mPEHE =
1

K − 1

∑
t ̸=t1

PEHE(τ̂t),

where PEHE(τ̂t) =
√

1
n

∑n
i=1 (τ̂t(Xi)− τt(Xi))

2
.

This metric will be used to compare and identify conditions (sample size n, number of possible treatments K, the
correctness of nuisance parameters and base-learners) under which we can precisely estimate CATEs. We do not
consider here model-fitting of base-learners. More specifically, all hyperparameters (e.g. number of trees, depth etc.)
are fixed to their default values during all experiments.
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5.1 Synthetic datasets: analytical functions in randomized and non-randomized studies

In this subsection, we begin by empirically evaluating the performance of our meta-learners when the treatment T is
taking K = 10 possible values in [0, 1] in a RCT setting where the outcome is a linear model and satisfies:

Y (t) | X ∼ N
(
(1 + t)X,σ2

)
, X ∼ U [0, 1].

then, we evaluate meta-learners on the hazard rate outcome:

Y (t) | X ∼ N
(
t+ ∥X∥ exp (−t∥X∥) , σ2

)
,

for X ∼ N (0, I5) in a non-randomized setting.

To simulate observational data, instead of removing some rows, we propose to create a bias in the data by selecting
preferentially only observations with specific characteristics (see subsection C.1.2 in Appendix). This strategy comes
in line with the findings and recommendations of Curth et al. (2021) about the creation of biased sub-sample and
evaluation of CATE estimators.

The GPS is estimated using gradient boosting models (XGBoost), and the outcome models µw are either estimated by
the T-learning (left value in the table for the DR and X-learners) or S-learning approaches (right value in the table). In
the following tables and Appendix D, the bold font is to indicate the best meta-learner (row) per base-learner (column),
and parenthesis indicates with which estimation of µw we get better results.

Table 1: mPEHE for XGBoost and RandomForest; linear outcome in RCT setting with n = 2000 units.

Meta-learner XGBoost RandomForest

T-Learner 0.061 0.037
S-Learner 0.029 0.040

M-Learner 1.23 1.15
DR-Learner 0.063 (0.063) (0.060) 0.060
X-Learner 0.059 (0.030) (0.041) 0.079

RLin-Learner 0.122 0.112

In Tables 1 and 2, we find that, as expected, the M-learner predicts poorly. The T-learner gives better predictions
for Random Forest, whereas the S-learner gives better results for XGBoost. Regularizing T-learner (RegT-Learner)
increases its performances. The X- and DR-learners improve the predictions of the S-learner for XGBoost, but this
improvement is not always observable for Random Forests. Surprisingly, the R-learner outperforms when combined
with Random Forests for the Hazard rate model.

Table 2: mPEHE for XGBoost and RandomForest. Hazard rate function in observational setting with n = 10000 units.

Meta-learner XGboost RandomForest

T-Learner 0.184 0.251
RegT-Learner 0.158 0.253

S-Learner 0.166 0.269

M-Learner 1.56 1.55
DR-Learner (0.151) 0.171 (0.275) 0.288
X-Learner (0.149) 0.162 (0.270) 0.286

RLin-Learner 0.235 0.178

Despite these satisfying results, we highlight the problem of over-fitting of gradient boosting models and Random Forest
by comparing them with the linear model in Appendix D. This problem should be taken seriously while estimating
CATEs.

Finally, on the one hand, when K increases, the R-learner becomes more effective for CATEs prediction, but the
performance of the T-learner becomes compromised, with a slight impact on other learners. We recommend, therefore,
the estimated potential outcome model by the S-learner when K ≥ 10 for pseudo-outcome meta-learners. On the other
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hand, having a large sample size n improves the quality of the meta-learner’s estimation (except for the M-learner,
probably due to estimation of r). To conclude, when applying gradient boosting machine as base-learner, two-step
meta-learners are robust. In particular, the X-learner improves the quality of one-step meta-learners, and when it does
not, the differences are very small.

5.2 Semi-synthetic dataset: simulating Enhanced Geothermal System with physics-based models

Motivation and description. The difficulty in evaluating a causal model’s performance in real-world applications
motivates the need to create a semi-synthetic dataset. In this subsection, we consider a multistage fracturing Enhanced
Geothermal System (EGS). We assume that the heat extraction performance satisfies the following physical model:
Qwell(ℓL) = Qfracture × ℓL/d × ηd, where Qfracture is the unknown heat extraction performance from a single
fracture, that can be generated using eight parameters including reservoir characteristics and fracture design, ℓL is the
Lateral Length of the well, d is the average spacing between two fractures and ηd is the stage efficiency penalizing the
individual contribution when fractures are close to each other. This model respects the unconfoundedness assumption
(3.1), and we can control all its variables in the simulations.

A randomized series of numerical experiments using a numerical emulator has been conducted to simulate the heat
performance from a single fracture (i.e. Qfracture), leading to an initial full factorial design of experiments dataset of
16200 observations covering all possible scenarios of a fracture in a reservoir. The final dataset, containing around one
million observations, is created by extrapolating the heat performance of each case to all well’s lateral lengths, fracture
spacing and the efficiency coefficient (See Appendix E for more details.)
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Figure 1: CATEs estimation on semi-synthetic dataset. Each line represents τj for j = 1, . . . ,K. (a): The ground truth
model; (b): A biased estimation of CATEs by regressing on Fracture_length_ft; (c): T-learner estimation; (d): X-learner

estimation.

The creation of this semi-synthetic dataset is also one of the main contributions of this paper as it serves as a ground
truth model for validating causal inference methods.
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Estimating Heterogeneous Treatment Effects on a non-randomized biased dataset. We consider the Lateral
Length as treatment T with K = 13 possible values and the covariates X ∈ R11 are the remaining variables. We
also consider a logarithmic transformation of the heat performance for a meaningful mPEHE, and we normalize the
treatment T . Following the preferential selection, we sample n = 10000 units such that wells with high lateral length
are likely to have larger fractures and vice versa. The GPS is estimated using gradient boosting models. Table 3 resumes
the mPEHE for different meta-learners. Most findings as subsection 5.1 remain valid: XGBoost model is generally a
better choice than Random Forests (except for T-learning); The X-learner, followed by DR-learner, outperforms all
other learners.

Table 3: mPEHE for XGBoost and RandomForest

Meta-learner XGBoost RandomForest

T-learner 0.167 0.154
RegT-Learner 0.153 0.153

S-learner 0.101 0.216

M-learner 1.05 0.907
DR-learner 0.146 (0.100) (0.162) 0.199
X-learner 0.140 (0.095) (0.175) 0.209

RLin-learner 0.336 0.338

Finally, Figure 1 shows the ground truth model, what would one obtain by regressing only on fracture length (correlation)
and T-, X-learner’s estimation. It demonstrates the ability of meta-learners, in particular the X-learner, to rebuild the
ground truth.

6 Discussion and Future work

In this paper, we investigated heterogeneous treatment effects estimation under multi-valued treatment. In addition
to standard plug-in meta-learners, we considered new representations to build pseudo-outcome meta-learners, and
we analyzed this class’s error variance. We also proposed the generalized Robinson decomposition to build the
R-learner. Through synthetic datasets and a semi-synthetic industrial dataset, we assessed the performances of different
meta-learners in a non-randomized case where some covariates are confounded with the treatment. We showed, in
particular, the ability of the X-learner to reconstruct the ground truth model. We also highlighted how the choice of
base-learner can affect the quality of CATEs estimation. Precisely, it is recommended to choose gradient boosting
machines than random forests. Finally, we may agree that our R-learner should be reviewed. This will allow us also
to apply non-parametric methods to it and compare it with other ML methods. The next step would be to extend this
approach to continuous treatments.
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A Proofs of propositions 4.1 - 4.6.

Proof of Proposition 4.1: Regularizing T-learner to selection bias.

Proof. This proof is similar to the proof of equation (5) in supplementary of Curth and van der Schaar (2021a).
Let p(x) denotes the PDF of X under P(·), p(x | T = t) the PDF of the conditional law of X|T and Rt =∫
(µ̂t(x)− µt(x))

2p(x | T = t)dx

EX∼P(·)
[
(µ̂t(X)− µt(X))2

]
=

∫
(µ̂t(x)− µt(x))

2p(x)dx

= P(T = t)

∫
(µ̂t(x)− µt(x))

2p(x | T = t)dx+
∑
t′ ̸=t

P(T = t′)

∫
(µ̂t(x)− µt(x))

2p(x | T = t′)dx

= P(T = t)Rt +
∑
t′ ̸=t

P(T = t′)

∫
(µ̂t(x)− µt(x))

2 p(x | T = t′)

p(x | T = t)
p(x | T = t)dx

= P(T = t)Rt +
∑
t′ ̸=t

P(T = t′)

∫
(µ̂t(x)− µt(x))

2

P(T=t′|x)p(x)
P(T=t′)

P(T=t|x)p(x)
P(T=t)

p(x | T = t)dx (Bayes rule)

= P(T = t)Rt + P(T = t)
∑
t′ ̸=t

∫
(µ̂t(x)− µt(x))

2P(T = t′ | x)
P(T = t | x)

p(x | T = t)dx

= P(T = t)Rt + P(T = t)

∫
(µ̂t(x)− µt(x))

2

∑
t′ ̸=t P(T = t′ | x)
P(T = t | x)

p(x | T = t)dx

= P(T = t)Rt + P(T = t)

∫
1− r(t,x)

r(t,x)
(µ̂t(x)− µt(x))

2p(x | T = t)dx

= P(T = t)

∫ (
1 +

1− r(t,x)

r(t,x)

)
(µ̂t(x)− µt(x))

2p(x | T = t)dx

= EX∼P(·|T=t)

[
P(T = t)

r(t,X)
(µ̂t(X)− µt(X))2

]
.

(6)

Proof of Proposition 4.2: Consistency of the M-learner.

Proof. We consider YM
t the modified IPW representation of Yobs in such way that ZM

t = YM
t − YM

t1 . By noticing
that 1{T = t}Yobs = 1{T = t}Y (t), we have for x ∈ X :

E(YM
t | X = x) = E

[
1{T = t}
r(t,X)

Yobs | X = x

]
=

1

r(t,x)
E [1{T = t}Y (t) | X = x]

=
1

r(t,x)
E
[
1{T = t} | X = x

]
E [Y (t) | X = x] (by Assumption 3.1)

= E(Y (t) | X = x) = µt(x)

(7)

Thus E(ZM
t | X = x) = µt(x)− µt1(x) and we get the desired result.

Proof of Proposition 4.3: Consistency of the DR-learner.

Proof. Let µ denote an arbitrary model of the outcome µ, let r denote also an arbitrary model of the GPS r satisfying
the overlap assumption 3.2. Similarly to the previous proof, we consider Y DR

t the AIPW representation of Yobs such
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that ZDR
µ,r,t = Y DR

µ,r,t − Y DR
µ,r,t1

and we show that

E(Y DR
µ,r,t | X = x) = E

[
Yobs − µT (X)

r(t,X)
1{T = t}+ µt(X) | X = x

]
= E

[
Y (t)− µt(X)

r(t,X)
1{T = t}+ µt(X) | X = x

]
= E [Y (t) | X = x] + E

[
Y (t)− µt(X)

r(t,X)
1{T = t} − Y (t) + µt(X) | X = x

]
= µt(x) + ηt(x),

(8)

with ηt(x) = E
[
1{T=t}−r(t,X)

r(t,X)

(
Y (t)− µt(X)

)
| X = x

]
.

We show that the second term ηt is null under the double robustness of the model, that is, if one of the nuisance
components is consistent.

• If the propensity model r is correctly specified (i.e. r(T,X) = r(T,X) = P(T | X) almost surely) but the
outcome model is misspecified, we would have

ηt(x) = E
[
1{T = t} − r(t,X)

r(t,X)
(Y (t)− µt(X))

∣∣X = x

]
= E

[
E
[1{T = t} − r(t,X)

r(t,X)
(Y (t)− µt(X)) | Y (t),X

]∣∣X = x

]
= E

[
(Y (t)− µt(X))E

[1{T = t} − r(t,X)

r(t,X)
| Y (t),X

]∣∣X = x

]
= E

[
(Y (t)− µt(X))

E[1{T = t} | Y (t),X]− r(t,X)

r(t,X)

∣∣X = x

]
= E

[
(Y (t)− µt(X))

E[1{T = t} | X]− r(t,X)

r(t,X)

∣∣X = x

]
(by Assumption 3.1)

= E
[
(Y (t)− µt(X))

r(t,X)− r(t,X)

r(t,X)

∣∣X = x

]
= 0,

(9)

where the last line holds by the definition the Generalize Propensity Score r(T,X).

• If the propensity model is misspecified but the outcome model is correctly specified (i.e. µ = µ = E(Yobs |
T,X) almost surely), we would have

ηt(x) = E
[
1{T = t} − r(T,X)

r(T,X)

(
Y (t)− E(Yobs | T = t,X)

)
| X = x

]
= E

[
E
[
1{T = t} − r(T,X)

r(T,X)

(
Y (t)− E(Yobs | T = t,X)

)∣∣T,X] | X = x

]
= E

[
1{T = t} − r(t,X)

r(t,X)

(
E [Y (t) | T,X]− E(Yobs | T = t,X)

)
| X = x

]
= E

[
1{T = t} − r(t,X)

r(t,X)
E
( [
Yobs

∣∣T = t,X
]
− E[Yobs | T = t,X]

)∣∣X = x

]
= 0.

(10)

Note that assuming µt = µt = E(Yobs | T = t,X) is sufficient to prove that η(x) = 0. The result holds similarly for
Y DR
µ,r,t1

. Therefore, the consistency of DR-learner is achieved if the propensity score is well-specified or if the potential
outcome model is well-specified (at least for t and t1).

Proof of Proposition 4.4: Consistency of the X-learner.
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Proof. By direct calculations, we show that

E(ZX
t | X = x) = E [1{T = t}Y (t) | X = x]− r(t,x)µt1(x) +

∑
t′ ̸=t

r(t′,x)
(
µt(x)− E [1{T = t′}Y (t′) | X = x]

)
+
∑
t′ ̸=t

r(t′,x)(µt′(x)− µt1(x))

= r(t,x)µt(x)− r(t,x)µt1(x) +
∑
t′ ̸=t

(
r(t′,x)µt(x)− r(t′,x)µt′(x)

)
+
∑
t′ ̸=t

r(t′,x)(µt′(x)− µt1(x)) (by Assumption 3.1)

= r(t,x)µt(x)− r(t,x)µt1(x) +
∑
t′ ̸=t

r(t′,x)µt(x)−
∑
t′ ̸=t

r(t′,x)µt1(x)

= (µt(x)− µt1(x))
(
r(t,x) +

∑
t′ ̸=t

r(t′,x)
)

= µt(x)− µt1(x) = τt(x).

Proof of Proposition 4.5: the generalized Robinson decomposition.

Proof. We show first the Neyman orthogonality propriety, i.e. E (ϵ | T,X) = 0. Indeed, we have

E
[
ϵ | T = t,X = x

]
= E

[
Yobs − µT (X) | T = t,X = x

]
= E

[
Y (t)− µT (X) | T = t,X = x

]
= µt(x)− µt(x) = 0.

(11)

Thus, the observed outcome model satisfies

E(Yobs | X = x) = E
[
ϵ+

∑
t∈T

1{T = t}µt(X) | X = x
]

= E
[
E[ϵ | T,X] | X = x

]
+
∑
t∈T

E
[
1{T = t} | X = x

]
µt(x)

=
∑
t∈T

µt(x)r(t,x) = µt1(x)r(t1,x) +
∑

t ̸=t1∈T

µt(x)r(t,x)

= µt1(x)
[
1−

∑
t ̸=t1∈T

r(t,x)
]
+

∑
t ̸=t1∈T

µt(x)r(t,x)

= µt1(x) +
∑

t̸=t1∈T

r(t,x) [µt(x)− µt1(x)]

= µt1(x) +
∑

t̸=t1∈T

r(t,x)τt(x) = m(X).

(12)
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By gathering both quantities

Yobs −m(X) =
∑
t∈T

1{T = t}µt(X)− µt1(X)−
∑

t̸=t1∈T

r(t,X)τt(X) + ϵ

= 1{T = t1}µt1(X) +
∑

t ̸=t1∈T

1{T = t}µt(X)− µt1(X)−
∑

t ̸=t1∈T

r(t,X)τt(X) + ϵ

= (1{T = t1} − 1)µt1(X) +
∑

t̸=t1∈T

(1{T = t}µt(X)− r(t,X)τt(X)) + ϵ

=
∑

t ̸=t1∈T

(1{T = t}µt(X)− r(t,X)τt(X))−
∑

t ̸=t1∈T

1{T = t}µt1(X) + ϵ

=
∑

t ̸=t1∈T

(1{T = t}µt(X)− 1{T = t}µt1(X)− r(t,X)τt(X)) + ϵ

=
∑

t ̸=t1∈T

(
1{T = t} − r(t,X)

)
τt(X) + ϵ.

(13)

Therefore, we obtain the generalized Robinson decomposition for the multi-treatment regime.

Proof of Proposition 4.6: R-learning with linear regression family.

Proof. For all t ̸= t1 ∈ T , we assume that τt belongs to the family of linear regression models such that:

F =
{{
τt(x) := βt,0 +

p−1∑
j=1

βt,jfj(x)
}
t̸=t1

/ βt = (βt,0, . . . , βt,p−1)
⊤ ∈ Rp

}
. (14)

fj are predefined functions (e.g. polynomial functions). It is also possible to use a matrix notation and write
τt(X) = Fβt where F = (fj(Xi)) ∈ Rn×p assumed to be full rank matrix rank(F) = p. To simply notations in the
following, we denote rather, τtk(X) = Fβk for k = 2, . . . ,K.

Let Y = (Y i)
n
i=1 and T k = (T i,k)

n
i=1 such that Y i = Yobs,i − m̂(Xi) and T i,k = 1{Ti = tk} − r̂(tk,Xi). Let

ϵ = (ϵi)
n
i=1 denote the vector of errors ϵ obtained for the generalized Robinson decomposition in Proposition 4.5.

We show immediately that L, the loss function associated to the mean squared error of ϵ, is quadratic with respect to β.
Indeed,

L({τt}t̸=t1) =
1

n
ϵ⊤ϵ =

1

n

(
Y −

K∑
k=2

T k ⊙ (Fβk)
)⊤(

Y −
K∑

k=2

T k ⊙ (Fβk)
)

=
1

n

Y ⊤
Y − 2

K∑
k=2

Y
⊤(
T k ⊙ (Fβk)

)
+

K∑
k,k′=2

(
T k ⊙ (Fβk)

)⊤ (
T k′ ⊙ (Fβk′)

)
=

1

n

(
Y

⊤
Y − 2

K∑
k=2

Y
⊤
DTk

Fβk +

K∑
k,k′=2

β⊤
k F

⊤DTk
DTk′Fβk′

)
.

(15)

The last line holds because T k ⊙ (Fβk) = DTk
Fβk, where DTk

is the diagonal matrix of the vector T k.

By differentiating ∂L/∂βj = 0 for j = 2, . . . ,K :
−a2 +B2β̂2 +

∑K
k=3 C2kβ̂k = 0

...
...

... = 0

−aK +
∑K

k=2 CKkβ̂k +BK β̂K = 0

⇐⇒


B2 C23 · · · C2K

C32 B3 · · · C3K

...
...

. . .
...

CK2 CK3 · · · BK



β̂2

β̂3
...

β̂K

 =


a2

a3

...
aK

 ,

16



Estimating Heterogeneous Treatment Effects under multiple treatment regime

where

aj =
1

n
F⊤DT j

Y ∈ Rp,

Bj =
1

n
F⊤D2

T j
F ∈ Rp×p,

Cij =
1

n
F⊤DT i

DT j
F ∈ Rp×p.

Let β =
(
β⊤
2 , . . . ,β

⊤
K

)⊤
∈ R(K−1)p and consider the block matrix A defined as.

A =


B2 C23 · · · C2K

C32 B3 · · · C3K

...
...

. . .
...

CK2 CK3 · · · BK

 . (16)

The matrix A is real symmetric and satisfies

β⊤Aβ =
∑

2≤k,l≤K

β⊤
k F

⊤DTk
DT l

Fβl

=

∥∥∥∥ K∑
k=2

DTk
Fβk

∥∥∥∥2 ≥ 0.

This result shows that A is positive semi-definite, all its eigenvalues are positive and also proves the existence of a
minimizer β̂ to the loss function L.

The optimal solution β̂ to the problem (5) can be given by

β̂ = A+a, (17)

where A+ is the Moore–Penrose inverse of A and a =
(
a⊤
2 , . . . ,a

⊤
K

)⊤
.

Remark. If DTk
βk /∈ Im(F)⊥ for all k ∈ {2, . . . ,K}, then

∑K
k=2 DTk

βk /∈ Im(F)⊥ = Ker(F⊤) which is sufficient
to prove that A is positive definite. In this case, the system in (62) admits an unique solution such that

β̂ =


β̂2

β̂3
...

β̂K

 =


B2 C23 · · · C2K

C32 B3 · · · C3K

...
...

. . .
...

CK2 CK3 · · · BK


−1 

a2

a3

...
aK

 . (18)

R-learning with kernel regression family. In this proof, we introduce the Kernel regression framework as developed
by Schölkopf and Smola (2001). This framework is based on considering the Hilbert space H defined as the closure of
the linear span of the functions f : x 7→ k(x,x∗) for a given x∗ ∈ Rd.

The Hilbert space H is defined as a Reproducing Kernel Hilbert Space (RKHS) Berlinet and Thomas-Agnan (2004)
with reproducing Kernel k because it verifies, for any f ∈ H and x ∈ Rd,

⟨f,k(x, ·)⟩H = f(x), (19)

where ⟨·, ·⟩H is the dot product associated to the Hilbert space H.

It is shown by the Representer theorem Schölkopf and Smola (2001) that any minimizer to the empirical risk of the
function f ∈ H admits a representation of the form

f̂(x) =

n∑
i=1

αik(x
(i),x), (20)
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where α ∈ Rn.

In the following, we consider the Matérn anisotropic geometric kernel

kσ2,θ(x,x
′) = rνσ2,θ

√√√√ d∑
j=1

|xj − x′j |2

θ2j

 , (21)

where r is a Matérn kernel in R, ν is usually taken for ν = 5
2 (Matérn 5/2) or ν → ∞, σ2 is the variance amplitude,

θ = (θ1, . . . , θd) ∈ Rd the length-scale vector, and we assume that each τt belongs to H, the Reproducing Kernel
Hilbert Space (RKHS) with reproducing kernel kσ2,θ in such way that

F =
{{
τ(x) =

n∑
i=1

αt,ikσ2,θ(x
(i),x)

}
t̸=t1

/ αt = (αt,1, . . . , αt,n)
⊤ ∈ Rn

}
. (22)

Similarly to linear regression models, it is possible to use a matrix notation τtk(X) = Kαk where Kij =

(kσ2,θ(x
(i),x(j))) is the Gram matrix of kσ2,θ.

For a fixed hyperparameters (σ2,θ), we prove immediately that the R-learning problem in (5) is similar to a linear
regression problem. Therefore, by Proposition 4.6, the coefficients α = (α2, . . . ,αK) satisfy

α̂ = α̂σ2,θ = A+
σ2,θaσ2,θ, (23)

where A+
σ2,θ is the Moore–Penrose inverse of Aσ2,θ and aσ2,θ =

(
a⊤
2 , . . . ,a

⊤
K

)⊤
such that

(aσ2,θ)j =
1

n
K⊤

σj
DT j

Y ∈ Rn,

(Bσ2,θ)j =
1

n
K⊤

σj
D2

T j
Kσj

∈ Rn×n,

(Cσ2,θ)ij =
1

n
K⊤

σi
DT i

DT j
Kσj

∈ Rn×n.

Finally, by considering τ̂k(x) =
∑n

i=1(α̂k)i kσ2,θ(x
(i),x), one can obtain the optimal hyperparameters (σ2,θ) by

solving the problem :

(σ̂2, θ̂) = argmin
(σ2,θ)

{
1

n

n∑
i=1

[
(Yobs,i − m̂(Xi))−

K∑
k=2

(
1{Ti = tk} − r̂(tk,Xi)

)
τ̂k(Xi)

]2
. (24)

This problem admits a explicit solution for σ̂2 by direct calculations as in the proof of Proposition 4.6 such that

σ̂2 =

∑K
k=2

(
Y

⊤
DTk

Rθ

)
αk∑

k,k′=2 α
⊤
k

(
R⊤

θ DTk
DTk′Rθ

)
αk′

, (25)

whereas the optimal length-scale vector θ̂ can be obtained numerically by running, for example, a multistart gradient
descent algorithm or multistart BFGS method.

θ̂ = argmin
θ

{
1

n

n∑
i=1

[
(Yobs,i − m̂(Xi))−

K∑
k=2

(
1{Ti = tk} − r̂(tk,Xi)

)
τ̂k,σ̂2(Xi)

]2
. (26)

B Error estimation of two-step meta-learners.

In the following subsection, we will analyze the error estimation of each two-step meta-learner. Let us assume that our
observations are generated from the a function f respecting the two causal assumptions (3.1-3.2) such that for all t ∈ T

Y (t) = f(t,X) + ϵ with ϵ ∼ N (0, σ2) (27)

Each unit i has the following observed and potential outcomes
Yobs,i = Yi(Ti) = f(Ti,Xi) + ϵi,

Yi(t) = f(t,Xi) + ϵi(t),

Yi(t1) = f(t1,Xi) + ϵi(t1).

(28)

where ϵi(t1) and ϵi(t1) are some Gaussian noise like ϵ.
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Remark. We recall that (Yi(t))1≤i≤n and (Yi(t1))1≤i≤n are virtual vectors and cannot be observed.

The CATE model τt for each t ∈ T can be written as
τt(x) = E(Y (t)− Y (t1) | X = x)

= E(f(t,X)− f(t1,X) + ϵ∗ | X = x)

= f(t,x)− f(t1,x)

(29)

with ϵ∗ is a noise independent from X and satisfying E(ϵ∗) = 0.

We want to estimate the CATE for each t ̸= t1 using linear regression model. We will assume the existence a vector
β∗
t ∈ Rp such that f(t,x) =

∑p−1
j=0 β

∗
t,jfj(x) (e.g. polynomial functions fj(x) = (xj

k)1≤k≤d).

Under the previous assumption, we write τt(X) = f(t,X) − f(t1,X) = Hβ∗ where β∗ = β∗
t − β∗

t1 and H =
(Hij) ∈ Rn×p is the regression matrix, assumed to be full rank matrix, such that Hij = fj(Xi) for i = 1, . . . , n and
j = 0, . . . , p− 1.

With pseudo-outcome meta-learners, we consider a random Variable Zt for a fixed t such that
Zt,i = At(Ti,Xi)Yobs,i +Bt(Ti,Xi), i = 1, . . . , n,

where the functions At(T,X) and Bt(T,X) are given for each pseudo-outcome meta-learners.

The regression coefficient β̂t are given by the Ordinary Least Squares (OLS) method

β̂t =
(
H⊤H

)−1
H⊤zt, (30)

where zt = (Zt,i)1≤i≤n. Thus,

β̂t =
(
H⊤H

)−1
H⊤zt

=
(
H⊤H

)−1
H⊤(At(Ti,Xi)Yobs,i +Bt(Ti,Xi)

)n
i=1

=
(
H⊤H

)−1
H⊤(At(Ti,Xi)f(Ti,Xi) +Bt(Ti,Xi) +At(Ti,Xi)ϵi

)n
i=1

=
(
H⊤H

)−1
H⊤(τt(x) +At(Ti,Xi)f(Ti,Xi)− τt(x) +Bt(Ti,Xi) +At(Ti,Xi)ϵi

)n
i=1

=
(
H⊤H

)−1
H⊤(Hβ∗

t +At(Ti,Xi)f(Ti,Xi)− f(t,Xi) +Bt(Ti,Xi)At(Ti,Xi)ϵi
)n
i=1

= β∗
t +

(
H⊤H

)−1
H⊤(At(Ti,Xi)f(Ti,Xi)− τt(x) +Bt(Ti,Xi) +At(Ti,Xi)ϵi

)n
i=1

= β∗
t +

(
H⊤H

)−1
H⊤ϵ̃t

where ϵ̃i = ψt(Ti,Xi) + At(Ti,Xi)ϵi and ψt(Ti,Xi) = At(Ti,Xi)f(Ti,Xi) − τt(x) + Bt(Ti,Xi) to simplify
notations.

Let us consider the random vector Z(n) such that

Z
(n)
t =

( 1
n
(H⊤ϵ̃t)1, . . . ,

1

n
(H⊤ϵ̃t)p,

1

n
(H⊤H)11, . . . ,

1

n
(H⊤H)pp

)⊤ ∈ Rp+p2

, (31)

that allows us to write β̂t as
β̂t = β∗

t +
(
H⊤H

)−1
H⊤ϵ̃t

= β∗
t +

( 1
n
H⊤H

)−1( 1
n
H⊤ϵ̃t

)
= β∗

t + ϕ(Z
(n)
t )

(32)

where ϕ : Rp+p2 −→ Rp is a C1-function.

In order to apply the Central Limit Theorem (CLT) later, we show that the vector Z(n)
t can be written as sum of i.i.d

random vectors Zt,i.

Z
(n)
t =

( 1
n
(H⊤ϵ̃)1, . . . ,

1

n
(H⊤ϵ̃)p,

1

n
(H⊤H)11, . . . ,

1

n
(H⊤H)pp

)⊤ ∈ Rp+p2

=
( 1
n

n∑
i=1

Hi1ϵ̃i, . . . ,Hipϵ̃i,
1

n

n∑
i=1

Hi1Hi1, . . . ,
1

n

n∑
i=1

HipHip

)⊤
=

1

n

n∑
i=1

(
Hi1ϵ̃i, . . . ,Hipϵ̃i,Hi1Hi1, . . . ,HipHip

)⊤
=

1

n

n∑
i=1

Zt,i

(33)
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The mean m of the vector Z(n)
t satisfies

m = E(Z(n)
t ) =

1

n

n∑
i=1

E(Zt,i) = E(Zt,i)

=
(
h1, . . . , hp, F11, . . . , Fpp

)⊤ (34)

where
hj = E

[
fj(X)

(
ψt(T,X) +At(T,X)ϵ

)]
= E

(
fj(X)ψt(T,X)

)
Fjj′ = E

(
fj(X)fj′(X)

)
,

(35)

and a covariance matrix C with entries

Cjj′ = Cov
(
Zt,j ,Zt,j′

)
= E(Zj , Zj′)− E(Zt,j)E(Zt,j′)

=


E
(
fj(X)fj′(X)

(
ψt(T,X) +At(T,X)ϵ

)2)− hjhj′ if j, j′ ∈ {1, . . . , p}
E
(
fk(X)fk′(X)fl(X)fl′(X)

)
− Fkk′Fll′ if j, j′ ∈ {p+ 1, . . . , p2}

E
(
fk(X)fk′(X)fj(X)

(
ψt(T,X) +At(T,X)ϵ

))
− hjFkk′ otherwise.

=


E
(
fj(X)fj′(X)ψ2

t (T,X)
)
+ σ2E

(
fj(X)fj′(X)A2

t (T,X)
)
− hjhj′ j, j′ ∈ {1, . . . , p}

E
(
fk(X)fk′(X)fl(X)fl′(X)

)
− Fkk′Fll′ if j, j′ ∈ {p+ 1, . . . , p2}

E
(
fk(X)fk′(X)fj(X)ψt(T,X)

)
− hjFkk′ otherwise.

(36)
where k, k′ = η−1(j) such that η is the correspondence indexes map between m and F in mj = Fkk′ when j ≥ p+1.

By considering now the vector

S(n) =
√
n
(
Z

(n)
t −m

)
=

1√
n

n∑
i=1

(
Zt,i −m

)
, (37)

one can show by the multivariate Central Limit Theorem (CLT) that

S(n) =
√
n
(
Z(n) −m

) L−→ N (0,C). (38)

Which allows us to write β̂t as function of S(n) and m. Indeed,

β̂t = β∗
t +

(
H⊤H

)−1
H⊤ϵ̃

= β∗
t + ϕ(Z(n))

= β∗
t + ϕ

(
m+ S(n)/

√
n
)

= β∗
t +Φ(S(n),m),

(39)

where Φ : Rp+p2 × Rp+p2 −→ Rp is also C1-function.

Since
√
n
(
S(n) − 0

) L−→ N (0,C), one obtains by the Delta method
√
n
[
Φ(S(n),m)− Φ(0,m)

]
L−→ N

(
0, J

(1)
Φ (0,m)⊤CJ

(1)
Φ (0,m)

)
, (40)

where J (1)
Φ (0,m) is the Jacobian matrix at the first p+ p2 coordinates of Φ at (0,m).

By denoting gn, a Gaussian noise with zero-mean and covariance matrix of C′ = J
(1)
Φ (0,m)⊤CJ

(1)
Φ (0,m), the

previous equation is equivalent to

β̂t = β∗
t +Φ(Sn,m) ≈ β∗

t +Φ(0,m) + gn/
√
n. (41)

Therefore, for n big enough :
E(β̂t) ≈ β∗

t +Φ(0,m). (42)
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and,

V(β̂t) ≈
1

n
J
(1)
Φ (0,m)⊤CJ

(1)
Φ (0,m). (43)

This results holds whether the nuisance parameters in At and Bt are well-specified or not, so there is no guarantee that
Φ(0,m) = 0 and the estimator β̂t may be biased.

In the following, we assume that the nuisance parameters in At and Bt are well-specified i.e. E
(
ψt(T,X)) | X =

x
)
= 0 in such way that E(Zt | X = x) = µt(x), or equivalently, E

(
H⊤ϵ̃

)
= 0. Consequently, the estimator of β̂t is

unbiased. In this case, computing the variance V(β̂t) becomes much easier and explicit.

On the one hand, by the multivariate Central Theorem Limit (CTL)

1√
n
H⊤ϵ̃

L−→ N (0,Σ) (44)

which is equivalent to
1√
n
H⊤ϵ̃ ≈ gn, (45)

where gn is a Gaussian noise with zero-mean and covariance matrix of Σ with entries

Σjj′ = E
[
fj(X)fj′(X)

(
ψ(T,X) +At(T,X)ϵ

)2]
= E

(
fj(X)fj′(X)ψ2

t (T,X)
)
+ σ2E

(
fj(X)fj′(X)A2

t (T,X)
)
.

(46)

On the other hand, by the law of large numbers, we have 1/n
(
H⊤H

) a.s−→ F, thus 1/n
(
H⊤H

) P−→ F. Since F is
invertible, then

n
(
H⊤H

)−1 P−→ F−1, (47)

where F = (Fjj′)1≤j,j′≤p and Fjj′ = E
(
fj(X)fj′(X)

)
.

By Slutsky’s theorem,
√
n
(
β̂t − β∗

t

)
= n

(
H⊤H

)−1 · 1/
√
nH⊤ϵ̃

L−→ N (0,F−1ΣF−1)
(48)

which leads to

E(β̂t) ≈ β∗
t ,

V(β̂t) ≈
1

n
F−1ΣF−1.

(49)

The determinant of the variance matrix, also known as the generalized variance by Wilks (1932, 1967) is usually used
as a scalar measure of overall multidimensional scatter and can be useful to compare the variance of each meta-learner.

In our case, comparing the generalized variance is equivalent to comparing det
(

1
nΣ
)

of each pseudo-outcome
meta-learner since

det
(
V(β̂t)

)
=
(
detF−1

)2
det
( 1
n
Σ
)
=

1(
detF

)2 det
( 1
n
Σ
)
, (50)

with, obviously, det (Σ) > 0 because Σ is symmetric positive definite.

In addition to the assumption (3.2) which states that, 0 < rmin ≤ r(t,X), we will assume that the potential outcomes
function f and models µw are bounded, i.e. there exists C > 0 such that |µw(x)|, |f(w,x)| ≤ C for all w ∈ T and
x ∈ Rd.
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B.1 Error estimation of the M-learner

Lemma B.1. If X1, . . . , Xm is a sequence of random variables and b > 1, then

∣∣∣∣E[( m∑
i=1

Xi

)2]∣∣∣∣ ≤ m

m∑
i=1

E
[∣∣X2

i

∣∣],
∣∣∣∣E[( m∑

i=1

Xi

)b]∣∣∣∣ ≤ m(b−1)
m∑
i=1

E
[∣∣X2

i

∣∣]. (51)

Proof. By induction and Minkowski inequality.

Let a, b > 1 such that 1/a+ 1/b = 1 and we assume that fj(X) ∈ La (i.e. fj(X) has all possible finite moments) for
all j ∈ {1, . . . , p}. By Hölder inequality we show that for the M-learner :

∣∣E(fj(X)fj′(X)ψ2
t (T,X)

)∣∣ ≤ ∣∣E(faj (X)faj′(X)
)∣∣1/a · ∣∣E(ψ2b

t (T,X)
)∣∣1/b (Hölder)

≤ δ
(a)
jj′

(
22b−1 E

[(1{T = t}
r(t,X)

− 1
)2b

f2b(t,X)

+
(1{T = t}
r(t,X)

− 1
)2b

f2b(t1,X)
])1/b

(Lemma B.1, with δ(a)jj′ =
∣∣E(faj (X)faj′(X)

)∣∣1/a)

≤ 2(2b−1)/b δ
(a)
jj′

(
E
[
22b−1

(1{T = t}
r2b(t,X)

+ 1
)
f2b(t,X)

]
+ E

[
22b−1

(1{T = t1}
r2b(t1,X)

+ 1
)
f2b(t1,X)

])1/b
(Lemma B.1)

≤ 22(2b−1)/b δ
(a)
jj′

(
E
[
E
(1{T = t}
r2b(t,X)

+ 1
)
| X
)
f2b(t,X)

]
+ E

[
E
(1{T = t1}
r2b(t1,X)

+ 1
)
| X
)
f2b(t1,X)

])1/b
≤ 22(2b−1)/b δ

(a)
jj′

(
E
[( 1

r2b−1(t,X)
+ 1
)
f2b(t,X)

]
+ E

[( 1

r2b−1(t1,X)
+ 1
)
f2b(t1,X)

])1/b
≤ 22(2b−1)/b δ

(a)
jj′

( 1

r2b−1
min

+ 1
)1/b(

C2b + C2b
)1/b

(Bounding r and f )

≤ 22(2b−1)/b δ
(a)
jj′

( 1

r2b−1
min

+
1

r2b−1
min

)1/b
21/bCb

≤ 22(2b−1)/b δ
(a)
jj′

21/b

r
(2b−1)/b
min

21/bCb

≤ 24 δ
(a)
jj′

1

r
(2b−1)/b
min

Cb =
16

r
(2b−1)/b
min

δ
(a)
jj′C

b

(52)
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On the other term, one obtains similarly:

∣∣E(fj(X)fj′(X)A2
t (T,X)

)∣∣ ≤ ∣∣E(faj (X)faj′(X)
∣∣1/a · ∣∣E(A2b

t (T,X)
)∣∣1/b (Hölder)

≤ δ
(a)
jj′

∣∣E(A2b
t (T,X)

)∣∣1/b
≤ δ

(a)
jj′

(
22b−1 E

(1{T = t}
r(t,X)

)2b
+ E

(1{T = t1}
r(t1,X)

)2b)1/b

(Lemma B.1)

≤ 2(2b−1)/bσ2δ
(a)
jj′

(
E
(1{T = t}
r2b(t,X)

)
+ E

(1{T = t1}
r2b(t1,X)

))1/b

≤ 2(2b−1)/bσ2δ
(a)
jj′

( 2

r2b−1
min

)1/b
=

4

r
(2b−1)/b
min

σ2δ
(a)
jj′

(53)

Thus, by combining the two terms, one gets:

∣∣∣Σ(M)
jj′

∣∣∣ ≤ ∣∣E(fj(X)fj′(X)ψ2
t (T,X)

)∣∣+ σ2
∣∣E(fj(X)fj′(X)A2

t (T,X)
)∣∣

≤ 16

r
(2b−1)/b
min

δ
(a)
jj′C

b +
4

r
(2b−1)/b
min

σ2δ
(a)
jj′

≤ 1

r
(2b−1)/b
min

(
16 Cb + 4σ2

)
δ
(b)
∗

(54)

where δ(b)∗ = maxj,j′
∣∣∣E(f b/(b−1)

j (X)f
b/(b−1)
j′ (X)

)∣∣∣(b−1)/b

= maxj,j′ δ
(a)
jj′ .

Therefore, for all ϵ = b− 1 > 0, there exists CM = 4 C + σ2 such that

∣∣∣Σ(M)
jj′

∣∣∣ ≤ 4r
1/(1+ϵ)−2
min δ

(1+ϵ)
∗ CM . (55)

In particular, if ϵ≪ 1 then 1/(1 + ϵ)− 2 ≈ −(1 + ϵ) and

∣∣∣Σ(M)
jj′

∣∣∣ ≤ 4

r1+ϵ
min

δ
(1+ϵ)
∗ CM . (56)

B.2 Error estimation of the DR-learner.

In this case, we have At(T,X) = 1{T=t}
r(t,X) − 1{T=t1}

r(t,X) and Bt(T,X) = µt(X) − µt1(X) −(
1{T=t}
r(t,X) − 1{T=t1}

r(t,X)

)
µT (X). We need just to compute the upper bound of E

(
fj(X)fj′(X)ψ2

t (T,X)
)

such that

ψt(T,X) = At(T,X)f(T,X)− τt(x) +Bt(T,X)

=
(1{T = t}
r(t,X)

− 1
)
f(t,X)−

(1{T = t1}
r(t1,X)

− 1
)
f(t1,X) + µt(X)

(
1− 1{T = t}

r(t,X)

)
− µt1(X)

(
1− 1{T = t1}

r(t1,X)

)
=
(1{T = t}
r(t,X)

− 1
)(
f(t,X)− µt(X)

)
−
(1{T = t1}
r(t1,X)

− 1
)(
f(t1,X)− µt1(X)

)
(57)
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Similarly to the previous calculus, we show that for the DR-learner∣∣E(fj(X)fj′(X)ψ2
t (T,X)

)∣∣ ≤ ∣∣E(faj (X)faj′(X)
)∣∣1/a · ∣∣E(ψ2b

t (T,X)
)∣∣1/b (Hölder)

≤ δ
(a)
jj′

(
22b−1 E

[(1{T = t}
r(t,X)

− 1
)2b(

f(t,X)− µt(X)
)2b

+
(1{T = t}
r(t,X)

− 1
)2b(

f(t1,X)− µt1(X)
)2b])1/b

(Lemma B.1)

≤ 2(2b−1)/b δ
(a)
jj′

(
E
[(1{T = t}

r(t,X)
− 1
)2b(

f(t,X)− µt(X)
)2b]

+ E
[(1{T = t}

r(t,X)
− 1
)2b(

f(t1,X)− µt1(X)
)2b])1/b

≤ 2(2b−1)/b δ
(a)
jj′

(
E
[
22b−1

(1{T = t}
r2b(t,X)

+ 1
)(
f(t,X)− µt(X)

)2b]
+ E

[
22b−1

(1{T = t1}
r2b(t1,X)

+ 1
)(
f(t1,X)− µt1(X)

)2b])1/b
(Lemma B.1)

≤ 22(2b−1)/b δ
(a)
jj′

(
E
[ ( 1

r2b−1(t,X)
+ 1
)(
f(t,X)− µt(X)

)2b]
+ E

[( 1

r2b−1(t1,X)
+ 1
)(
f(t1,X)− µt1(X)

)2b])1/b
≤ 22(2b−1)/b δ

(a)
jj′

( 1

r
(2b−1)/b
min

+ 1
)(

E
[ (
f(t,X)− µt(X)

)2b]
+ E

[(
f(t1,X)− µt1(X)

)2b])1/b
≤ 22(2b−1)/b δ

(a)
jj′

( 1

r
(2b−1)/b
min

+ 1
)[(

E
(
f(t,X)− µt(X)

)2b)1/b
+ E

(
f(t1,X)− µt1(X)

)2b)1/b]
(Subadditivity of |x|1/b)

(58)

Hence, ∣∣∣Σ(DR)
jj′

∣∣∣ ≤ 22(2b−1)/b δ
(a)
jj′

( 1

r
(2b−1)/b
min

+ 1
)[(

E
(
f(t,X)− µt(X)

)2b)1/b
+
(
E
(
f(t1,X)− µt1(X)

)2b)1/b]
+

4

r
(2b−1)/b
min

σ2δ
(a)
jj′

≤ 22(2b−1)/b δ
(b)
∗

( 1

r
(2b−1)/b
min

+ 1
)[(

E
(
f(t,X)− µt(X)

)2b)1/b
+
(
E
(
f(t1,X)− µt1(X)

)2b)1/b]
+

4

r
(2b−1)/b
min

σ2δ
(b)
∗

(59)

We consider now ϵ = b− 1 > 0 and we assume that ϵ≪ 1, then

22(2b−1)/b δ
(b)
∗

( 1

r
(2b−1)/b
min

+ 1
)[(

E
(
f(t,X)− µt(X)

)2b)1/b
+
(
E
(
f(t1,X)− µt1(X)

)2b)1/b]
+

4

r
(2b−1)/b
min

σ2δ
(b)
∗

≈ 4 δ
(1+ϵ)
∗

( 1

r1+ϵ
min

+ 1
)(

E
(
f(t,X)− µt(X)

)2
+ E

(
f(t1,X)− µt1(X)

)2)
+ 4 σ2δ

(1+ϵ)
∗

1

r1+ϵ
min

(60)

and, consequently, ∣∣∣Σ(DR)
jj′

∣∣∣ ≤ 4
( 1

r1+ϵ
min

CDR + C∗
DR

)
δ
(1+ϵ)
∗ , (61)

where C∗
DR = E

(
f(t,X)− µt(X)

)2
+ E

(
f(t1,X)− µt1(X)

)2
and CDR = C∗

DR + σ2.
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B.3 Error estimation of the X-learner.

In this case, we have At(T,X) = 2 1{T = t}−1 and Bt(T,X) = (1−1{T = t})µt(X)−µt1(X)+
∑

t′ ̸=t 1{T =

t′}µt′(X). One can write ψt as

ψt(T,X) = At(T,X)f(T,X)− τt(x) +Bt(T,X)

=
(
2 1{T = t} − 1

)
f(T,X)− (f(t,X)− f(t1,X)) + (1− 1{T = t})

µt(X)− µt1(X) +
∑
t′ ̸=t

1{T = t′}µt′(X)

=
(
1− 1{T = t}

)
(µt(X)− f(t,X))− (µt1(X)− f(t1,X))

+
∑
t′ ̸=t

1{T = t′}
(
µt′(X)− f(t′,X)

)
= at +

∑
t′ ̸=t

bt′ .

(62)

Similarly to the M- and DR-learners calculus, and using lemma B.1:

∣∣E(fj(X)fj′(X)ψ2
t (T,X)

)∣∣ ≤ ∣∣E(faj (X)faj′(X)
)∣∣1/a · ∣∣E(ψ2b

t (T,X)
)∣∣1/b

≤ δ
(a)
jj′

∣∣∣E(at +∑
t′ ̸=t

bt′
)2b∣∣∣1/b (Hölder)

≤ δ
(a)
jj′

(
22b−1

(
E
(
a2bt
)
+ E

(∑
t′ ̸=t

bt′
)2b))1/b

(Lemma B.1)

≤ 2(2b−1)/b δ
(a)
jj′

(
E
(
a2bt
)
+ E

(∑
t′ ̸=t

bt′
)2b)1/b

≤ 2(2b−1)/b δ
(a)
jj′

[
22b−1

(
E
((
1− 1{T = t}

)2b
(µt(X)− f(t,X)

)2b)
+ E

(
µt1(X)

− f(t1,X)
)2b)

+ (K − 1)2b−1
∑
t′ ̸=t

E
(
1{T = t′}

(
µt′(X)− f(t′,X)

)2b]1/b
(Lemma B.1)

≤ 2(2b−1)/b δ
(a)
jj′

[
22b−1

(
E
(
µt(X)− f(t,X)

)2b
+ E

(
µt1(X)− f(t1,X)

)2b)
+ (K − 1)2b−1

∑
t′ ̸=t

E
(
µt′(X)− f(t′,X)

)2b]1/b
≤ 2(2b−1)/b δ

(a)
jj′

[
2(2b−1)/b

(
E
(
µt(X)− f(t,X)

)2b)1/b
+ 2(2b−1)/b

(
E
(
µt1(X)

− f(t1,X)
)2b)1/b

+ (K − 1)(2b−1)/b
∑
t′ ̸=t

(
E
(
µt′(X)− f(t′,X)

)2b)1/b]
≤ 22(2b−1)/b δ

(a)
jj′

[(
E
(
µt(X)− f(t,X)

)2b)1/b
+
(
E
(
µt1(X)− f(t1,X)

)2b)1/b
+
(K − 1

2

)(2b−1)/b∑
t′ ̸=t

(
E
(
µt′(X)− f(t′,X)

)2b)1/b]
(63)
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Given that E
(
fj(X)fj′(X)A2

t (T,X)
)
= E

(
fj(X)fj′(X)

)
= δ

(1)
jj′ , we deduce finally∣∣∣Σ(X)

jj′

∣∣∣ ≤ ∣∣E(fj(X)fj′(X)ψ2
t (T,X)

)∣∣+ σ2
∣∣E(fj(X)fj′(X)A2

t (T,X)
)∣∣

≤ 22(2b−1)/b δ
(a)
jj′

[(
E
(
µt(X)− f(t,X)

)2b)1/b
+
(
E
(
µt1(X)− f(t1,X)

)2b)1/b
+
(K − 1

2

)(2b−1)/b∑
t′ ̸=t

(
E
(
µt′(X)− f(t′,X)

)2b)1/b]
+ σ2δ

(1)
jj′

≤ 22(2b−1)/b δ
(b)
∗

[(
E
(
µt(X)− f(t,X)

)2b)1/b
+
(
E
(
µt1(X)− f(t1,X)

)2b)1/b
+
(K − 1

2

)(2b−1)/b∑
t′ ̸=t

(
E
(
µt′(X)− f(t′,X)

)2b)1/b]
+ σ2δ

(1)
∗

(64)

where δ(1)∗ = maxj,j′ E
(
fj(X)fj′(X)

)
.

As in the previous cases, we consider now ϵ = b− 1 > 0 with ϵ≪ 1, then

22(2b−1)/b δ
(b)
∗

[(
E
(
µt(X)− f(t,X)

)2b)1/b
+
(
E
(
µt1(X)− f(t1,X)

)2b)1/b
+
(K − 1

2

)(2b−1)/b∑
t′ ̸=t

(
E
(
µt′(X)− f(t′,X)

)2b)1/b]
+ σ2δ

(1)
∗

≈ 4 δ
(1+ϵ)
∗

(
E
(
f(t,X)− µt(X)

)2
+ E

(
f(t1,X)− µt1(X)

)2
+

(K − 1)2

4

∑
t′ ̸=t

E
(
µt′(X)− f(t′,X)

)2
+ σ2δ

(1)
∗ .

(65)

Therefore, ∣∣∣Σ(X)
jj′

∣∣∣ ≤ 4δ
(1+ϵ)
∗ CX + σ2δ

(1)
∗ . (66)

where CX = E
(
f(t,X)− µt(X)

)2
+ E

(
f(t1,X)− µt1(X)

)2
+ (K−1)2

4

∑
t′ ̸=t E

(
µt′(X)− f(t′,X)

)2
.

B.4 Analysis and comparison:

From equation (55), (61) and (66), one can deduce that:

• The M-learner has the largest variance and its variance upper bound is constant.
• As the term rmin is present in the denominator of the upper bounds of both M-learners and DR-learners. The

variance is likely to be high when there is a lack of overlap in the propensity score, i.e. rmin → 0.
• Since the upper bounds of the X-learner and DR-learner depend on the expected squared error of µw (i.e.
E
[
f(w,X)− µw(X))2

]
. One can expect that, the more outcome models are precise, the lower the variance

is.

M-learner vs DR-learner. If the potential outcome models are well-specified, then the expected squared error µt is
minimal and the upper bound of Σ(DR)

jj′ is expected to be lower for the DR-learner. One can anticipate the estimator β̂t

of the DR-learner would have a low variance than the M-learner. Controversially, suppose the outcome models are
misspecified (but the propensity score is well-specified). In that case, there is no guarantee that the DR-learner would
perform better than M-learner, and it may perform even worse.

X-learner vs M-learner. The X-learner is likely to have low variance if the expected squared error of all outcome
models µt′ is not big enough and satisfies some conditions (which is less likely to happen.)

X-learner vs DR-learner. It is difficult to anticipate which meta-learner would perform better in terms of variance.
This will depends mainly on the expected squared error of µt′ for t′ ∈ T /{t1, t}, K and rmin, whom, in some cases,
will make the X-learner having less variance than the DR-learner, and the opposite in the other cases.
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C Additional details about simulated analytical functions in section 5.1.

In this section, we consider a treatment T with K = 10 possible values in T = {tk+1 := k
K−1 , k ∈ {0, . . . ,K − 1}},

drawn from an uniform distribution, and the following outcome functions.

The linear model outcome for X ∈ R:

Y (t) | X ∼ N
(
(1 + t)X,σ2

)
. (67)

The multivariate hazard rate Imbens (2000) outcome satisfies for X ∈ R5:

Y (t) | X ∼ N
(
t+ ∥X∥ exp (−t∥X∥) , σ2

)
. (68)

We compute in the following subsections the exact components of each model: GPS r, potential outcome model µt and
observed outcome model m.

C.1 The Generalized Propensity Score.

C.1.1 Randomized Controlled Trials (RCT) setting.

In the first design (RCT), we sample n units such that T and X are independent. The true propensity score is known

r(t,X) = P(T = t) = 1/K for t ∈ T . (69)

C.1.2 Observational non-randomized setting.

In the second design (observational studies), we combine K + 1 samples in a single sample of n units. The first sample
DK contains nK = n/2 units where the treatment is assigned randomly: X and T are independent, P(T = t) = 1/K,
X ∼ N (0, I5) when the hazard rate model is applied and X ∼ U(0, 1) when the linear model is applied. For
k = 0, . . . ,K − 1 the sample Dk contains nk = n/(2K) units and (X, T ) is a non RCT distribution. For the linear
model, the joint distribution of (X,T ) is given by:

T =
k

K − 1
and X follows a uniform distribution U(Ik) with Ik =

[ k
K
,
k + 1

K

)
. (70)

For the hazard rate model, the joint distribution of (X, T ) is given by:

T =
k

K − 1
and the X1 follows a standardized normal law truncated Gaussian on Ik =

[
q k

K
, q k+1

K

)
, (71)

where qα is the α-quantile of the standardized normal law. This strategy of selecting preferentially only observations
with certain characteristics is called preferential selection sampling and creates thus a selection bias on observed data.

For all k ∈ {0, . . . ,K − 1}, the true propensity score satisfies for the linear model:

r(tk+1, x) =

{ 1+K
2K if x ∈ Ik,
1

2K otherwise.
(72)

and, for the hazard rate model, it satisfies:

r(tk+1,x) =

{ 1+K
2K if x1 ∈ Ik,
1

2K otherwise.
(73)

Proof. We show the proof for the hazard rate model with normal distribution. The proof remains the same for the linear
model in a non-randomized setting.

Let A be a random event, then

P(A) =
K∑

k=0

nk
n
Pk(A), (74)

where P is the observed probability distribution of the combined sample and Pk denotes the probability measure induced
by (68), (71) and the unconfoundedness assumption 3.1.
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Given the treatment T = tj and covariate vector x = (x, x2, . . . , x5), we have

r(T = tj ,x) = P(T = tj | X1 = x)

= lim
δ→0

P(T = tj | X1 ∈ [x, x+ δ])

= lim
δ→0

P (T = tj , X1 ∈ [x, x+ δ])

P (X1 ∈ [x, x+ δ])
.

(75)

On the one hand,

P(T = tj , X1 ∈ [x, x+ δ]) =

K∑
k=0

nk
n
Pk(T = tj , X1 ∈ [x, x+ δ])

=
nj
n

Pj(T = tj , X1 ∈ [x, x+ δ]) +
nK
n

PK(T = tj , X1 ∈ [x, x+ δ])

=
nj
n

Pj(X1 ∈ [x, x+ δ]) +
nK
n

PK(T = 0)PK(X1 ∈ [x, x+ δ])

=
1

2K

Pj(X1 = x,X1 ∈ Ij)

Pj(X ∈ Ij)
+

1

2K
PK(X1 ∈ [x, x+ δ])

=
1

2K

PK(X1 ∈ [x, x+ δ], X1 ∈ Ij)

PK(X1 ∈ Ij)
+

1

2K
PK(X1 ∈ [x, x+ δ])

=
1

2K

1{qj/K − δ ≤ x < q(j+1)/K}
PK(X1 ∈ Ij)

PK(X1 ∈ [x, x+ δ])

+
1

2K
PK(X1 ∈ [x, x+ δ])

=
1

2K

(
1{qj/K − δ ≤ x < q(j+1)/K}

PK(X1 ∈ Ij)
+ 1

)
PK(X1 ∈ [x, x+ δ])

=
1

2K

(
1{qj/K − δ ≤ x < q(j+1)/K}

Φ(q(j+1)/K)− Φ(qj/K)
+ 1

)
PK(X1 ∈ [x, x+ δ])

=
1

2K

(
1{qj/K − δ ≤ x < q(j+1)/K}

(k + 1)/K − k/K
+ 1

)
PK(X1 ∈ [x, x+ δ])

=
1

2K

(
1{qj/K − δ ≤ x < q(j+1)/K}K + 1

)
PK(X1 ∈ [x, x+ δ]),

(76)

where Φ is the CDF function of the standardized normal distribution.

On the other hand,

P(X1 ∈ [x, x+ δ]) =

K∑
k=0

nk
n
Pk(X1 ∈ [x, x+ δ])

=
1

2K

K−1∑
k=0

Pk (X1 ∈ [x, x+ δ], X1 ∈ Ik)

Pk (X1 ∈ Ik)
+

1

2
PK(X1 ∈ [x, x+ δ])

=

K−1∑
k=0

PK (X1 ∈ [x, x+ δ])

PK (X1 ∈ Ik)
1{x ∈ Ik}+

1

2
PK(X1 ∈ [x, x+ δ])

=
1

2K

(
K−1∑
k=0

1{qk/K − δ ≤ x < q(k+1)/K}
PK (X1 ∈ Ik)

+K

)
PK(X1 ∈ [x, x+ δ])

=
1

2K

(
K−1∑
k=0

K1{qk/K − δ ≤ x < q(k+1)/K}+K

)
PK(X1 ∈ [x, x+ δ]).

(77)
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Finally,

r(tj ,x) = lim
δ→0

P (T = tj , X1 ∈ [x, x+ δ])

P (X1 ∈ [x, x+ δ])

= lim
δ→0

1
2K

(
1{qj/K − δ ≤ x < q(j+1)/K}K + 1

)
PK(X1 ∈ [x, x+ δ])

1
2K

(∑K−1
k=0 1{qk/K − δ ≤ x < q(k+1)/K}K +K

)
PK(X1 ∈ [x, x+ δ])

= lim
δ→0

1{qj/K − δ ≤ x < q(j+1)/K}K + 1∑K−1
k=0 1{qk/K − δ ≤ x < q(k+1)/K}K +K

=
1{x ∈ Ij}K + 1(∑K−1

k=0 1{x ∈ Ik}+ 1
)
K

=

{ 1+K
2K if x ∈ Ij ,
1

2K otherwise.

(78)

C.2 The potential outcome models.

The potential outcome models are given directly by the conditional mean. For the linear model, µt satisfies for all
t ∈ T :

µt(x) = (1 + t)x, (79)

and, for the hazard rate model, µt is given by:

µt(x) = t+ ∥x∥ exp (−t∥x∥). (80)

C.3 The observed outcome models.

For the linear model, the observed outcome model m can be computed as:

m(x) = E(Yobs | X = x)

= E((1 + T )X | X = x)

= (1 + E(T | X = x))x

=
(
1 +

K∑
k=1

r(tk, x)tk
)
x,

(81)

where r is given by (72).

and, for the hazard rate model, m can be computed as:

m(x) = E(E(Yobs | X, T ) | X = x)

= E(T + ∥X∥ exp (−T∥X∥) | X = x)

= E(T | X = x) + ∥x∥ E(exp (−T∥X∥) | X = x)

=

K∑
k=1

r(tk,x)tk +

K∑
k=1

∥x∥ r(tk,x) exp (−tk∥x∥).

(82)

where r is given by (73).

29



Estimating Heterogeneous Treatment Effects under multiple treatment regime

D Additional numerical results and plots.

D.1 linear model in randomized setting.

Table 4: mPEHE for three different ML base-learners; Case where nuisance components are exact.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 2.248 2.07 0.099
DR-Learner 0.159 0.134 7.04 10−3

X-Learner 0.022 0.028 1.53 10−3

RLin-Learner 7.33 10−3

Table 5: mPEHE for three different ML base-learners; Case when nuisance components are well-specified.

Meta-learner XGBoost RandomForest Linear Model

T-Learner 0.061 0.037 7.37 10−3

S-Learner 0.029 0.040 3.65 10−3

M-Learner 1.23 1.15 0.210
DR-Learner 0.063 (0.063) (0.060) 0.060 7.22 (3.39) 10−3

X-Learner 0.059 (0.030) (0.041) 0.079 7.36 (3.59) 10−3

RLin-Learner 0.122 0.112 0.046

Table 6: mPEHE for three different ML base-learners; Case when the propensity score is misspecified.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 3.54 3.31 1.31
DR-Learner 0.119 0.104 0.011
X-Learner 0.030 0.041 3.59 10−3

RLin-Learner 0.318 0.313 0.334

Table 7: mPEHE for three different ML base-learners; Case when the outcome models are misspecified.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 1.23 1.15 0.210
DR-Learner 0.737 0.800 0.217
X-Learner 0.282 0.282 0.246

RLin-Learner 0.045

Table 8: mPEHE for three different ML base-learners; Case when nuisance components are misspecified.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 3.54 3.31 1.31
DR-Learner 1.66 1.85 0.758
X-Learner 0.282 0.282 0.246

RLin-Learner 0.280

30



Estimating Heterogeneous Treatment Effects under multiple treatment regime

D.2 linear model in non-randomized setting

Table 9: mPEHE for three different ML base-learners; Case where nuisance components are exact.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 3.68 2.33 0.68
DR-Learner 0.287 0.147 0.014
X-Learner 0.023 0.030 1.57 10−3

RLin-Learner 9.44 10−3

Table 10: mPEHE for three different ML base-learners; Case when nuisance components are well-specified.

Meta-learner XGBoost RandomForest Linear Model

T-Learner 0.061 0.042 7.37 10−3

RegT-Learner 0.052 0.042 7.60 10−3

S-Learner 0.029 0.050 3.65 10−3

M-Learner 1.23 1.15 0.209
DR-Learner 0.060 (0.055) (0.068) 0.095 7.60 (3.95) 10−3

X-Learner 0.051 (0.030) (0.045) 0.079 7.33 (3.95) 10−3

RLin-Learner 0.122 0.127 0.046

D.3 Hazard rate model in randomized setting

Table 11: mPEHE for three different ML base-learners; Case where nuisance components are exact.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 4.25 4.22 0.52
DR-Learner 0.127 0.139 0.099
X-Learner 0.045 0.085 0.098

RLin-Learner 0.100

Table 12: mPEHE for three different ML base-learners; Case when nuisance components are well-specified.

Meta-learner XGBoost RandomForest Linear Model

T-Learner 0.171 0.267 0.105
S-Learner 0.154 0.267 0.649

M-Learner 1.52 1.76 0.792
DR-Learner (0.154) 0.163 0.286 (0.282) (0.106) 0.461
X-Learner (0.149) 0.161 (0.284) 0.285 (0.105) 0.637

RLin-Learner 0.227 0.241 0.691
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D.4 Hazard rate model in non-randomized setting

Table 13: mPEHE for three different ML base-learners; Case where nuisance components are exact.

Meta-learner XGBoost RandomForest Linear Model

M-Learner 6.33 5.81 3.52
DR-Learner 0.138 0.140 0.100
X-Learner 0.044 0.085 0.098

RLin-Learner 0.290

Table 14: mPEHE for three different ML base-learners; Case when nuisance components are well-specified.

Meta-learner XGboost RandomForest Linear Model

T-Learner 0.184 0.251 0.128
RegT-Learner 0.158 0.253 0.111

S-Learner 0.166 0.269 0.642

M-Learner 1.56 1.55 0.866
DR-Learner (0.151) 0.171 (0.275) 0.288 (0.111) 0.495
X-Learner (0.149) 0.162 (0.270) 0.286 (0.114) 0.627

RLin-Learner 0.235 0.178 1.00
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D.5 Asymptotic performances when n and K increase.
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Figure 2: Variation of meta-learner’s performances when number of possible treatment values K for the hazard rate
function in observational design setting. (a): All meta-learners; (b): When the potential outcome models µ. are

estimated by regT-learning; (c): When the potential outcome models µ. are estimated by S-learning.
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Figure 3: Variation of meta-learner’s performances with the observed sample size n for the hazard rate function in
observational design setting. (a): All meta-learners; (b): Without the M-learner; (c): Without the M-learner with a focus

on low sample regime.

E Description of the semi-synthetic dataset

This section describes the process of generating our semi-synthetic dataset simulating the heat delivered by a multistage
fracturing EGS (see Figure 4). The process involved the creation of a conceptual reservoir model and modelling
multiple well’s completion scenarios. The output (heat extraction performance) obtained from physics-based simulation
experiments was tabulated with inputs in the semi-synthetic dataset.

Figure 4: An illustration of an multistage fracturing EGS. The objective is to evaluate the impact of lateral length of the
well on the heat extraction performance.
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To ease confidentiality and non-disclosure information issues, input data for the model was fabricated. However, data
has been selected from reliable sources such as, field observations, journals and books to be within the range of interest.
This allowed building a plain but representative reservoir model that would provide realistic results of an EGS.

The heat extraction performance from a single fracture (Qfracture) is determined using fracture length, fracture height,
fracture width, fracture permeability, reservoir porosity, reservoir permeability and pore pressure. Modelling and
simulation work were done using preprocessor and reservoir simulation tools (Petrel/Eclipse).

The four physical properties of the fracture were investigated, and the list of values used for each parameter can be
observed in Table 15. In the end, 10× 10× 2× 3 = 600 fracture’s simulation cases has been realized.

Table 15: Fracture parameters and their range of variation for simulations

Variable Range of variation

Fracture length (ft) [100, 1000] by a step of 100 ft.
Fracture height (ft) [50, 500] by a step of 50 ft.
Fracture width (in) {0.1, 0.2}

Fracture Permeability (md) {30000, 85000, 19000}

To emulate distinct reservoir schemes, it was decided to vary three main parameters; porosity, permeability and pore
pressure. For porosity and permeability, the simulator tool took the minimum and maximum values and estimated the
physical properties across the reservoir. Three different multipliers were applied to define three (Low, Base and High)
scenarios. Concerning pore pressure, three specific values were defined to simulate under-normal, normal (base) and
overpressure (high) gradient conditions. Therefore, 3× 3× 3 = 27 possible scenarios were defined. Table 16 displays
the range of minimum and maximum values for the three reservoir properties to be varied.

Table 16: Reservoir parameters and their range of variation for simulations.

Variable Range of variation

(Kmin,Kmax) (md) {(0.0054, 0.0157), (0.054, 0.157), (0.109, 0.314)}
(Pormin,Pormax) (dec) {(0.0054, 0.0157), (0.054, 0.157), (0.109, 0.314)}

Pore pressure (psi) {5000, 7000, 9000}

By combining different reservoir scenarios with single fracture simulations, we obtained a single dataset with 16,200
possible cases for a fracture in a reservoir then we simulated the heat extraction performance for each experiment.
Simulation’s results were tabulated in the dataset "Single_Fracture_Simulation_Cases_16200.csv".

The next step is to define well characteristics (lateral lengths and fracture spacing) to evaluate the heat extraction
performance of the well, when reservoir and fracture properties were not changed.

Table 17: Well parameters and their range of variation.

Variable Range of variation

Lateral length (ft) [2000, 14000] by a step of 1000 ft.
Fracture spacing (ft) [100, 500] by a step of 100 ft.

Regarding the spacing efficiency coefficient, this coefficient was used to model interactions between fractures and
penalize the heat extraction performance of a single fracture in the presence of other close fractures, that is, when the
spacing between two fractures is small. Indeed, if the fractures are spaced too close to each other, there may not be
enough thermal energy in the rock to heat the water, which decreases the heat extraction efficiency. Modelling this
efficiency led to the efficiency table "Fracture_Efficency.csv" that describe what would be the well’s heat performance
behaviour with respect to the fracture spacing selected. Based on this table, one can interpolate the efficiency to draw
the curve (see Figure 5) and thus obtain the spacing efficiency coefficient for any desired value fracture spacing.

The final generation of the semi-synthetic dataset "Main_Dataset.csv" was achieved by combining two main tables
created using R programming language. This table allowed to calculation the heat performance of a well for any lateral
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Figure 5: Cross plot between fracture spacing efficiency and average stage spacing.

length and fracture spacing between 500 ft and 100 ft with the associated spacing efficiency coefficient defined in the
efficiency table, following the physical model Qwell(ℓL) = Qfracture × ℓL/d× ηd.

The three datasets are available in the zip file in Supplementary Materials "Semi-synthetic-EGS.zip". They will also be
shared in the following repository for public use.

Finally, we emphasize that the designed methodology applied for this study focused not only on generating a semi-
synthetic dataset using reservoir numerical simulation but also on creating a new benchmarking dataset for the
comparison and validation of causal inference methods. Indeed, following the last step of creating the final dataset
"Main_Dataset.csv", any user can define different distributions (with different values) on lateral lengths in the range
[2000, 14000] and fracture spacing in range [100, 500], pick-up the corresponding spacing efficiency coefficients
using the curve drawn in Figure 5 and generate a new semi-synthetic dataset by extrapolating them with "Sin-
gle_Fracture_Simulation_Cases_16200.csv" dataset.

Creating a non-randomized biased dataset. The idea of this step was to create a collection of biased data from the
main semi-synthetic dataset to emulate observational data found in real-world situations. For example, geothermal
wells with larger lateral lengths are likely to have more fractures (expensive wells are located in better geological areas).
The opposite is seen for smaller wells that tend to be associated with less fractures. This situation creates a discrepancy
between what engineers expect with physical models and what they observe in the field data. The biased data, with
9,992 observations, was generated by following the preferential selection strategy from the main dataset. Figure 6 shows
the difference between the real heat extraction performance of the EGS and the observed heat extraction performance
on the field: low (under-estimated) heat performance for small wells and high (over-estimated) heat performance for
large wells
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Figure 6: An illustration of selection bias on the heat performance. Red line: The heat extraction performance on the
main dataset (i.e. Ground Truth Model). Blue line: The heat performance on the biased dataset (i.e. observed response).
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