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Abstract

Probabilistic regression models typically use the Maximum Likelihood Estimation

or Cross-Validation to fit parameters. Unfortunately, these methods may give

advantage to the solutions that fit observations in average, but they do not pay

attention to the coverage and the width of Prediction Intervals. In this paper,

we address the question of adjusting and calibrating Prediction Intervals for

Gaussian Processes Regression. First we determine the model’s parameters by

a standard Cross-Validation or Maximum Likelihood Estimation method then

we adjust the parameters to assess the optimal type II Coverage Probability

to a nominal level. We apply a relaxation method to choose parameters that

minimize the Wasserstein distance between the Gaussian distribution of the

initial parameters (Cross-Validation or Maximum Likelihood Estimation) and

the proposed Gaussian distribution among the set of parameters that achieved

the desired Coverage Probability.

Keywords: Cross-Validation, Coverage Probability, Gaussian Processes,

Prediction Intervals

1. Introduction

Many approaches of supervised learning focus on point prediction by produc-

ing a single value for a new point and do not provide information about how far
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those predictions may be from true response values. This may be inadmissible,

especially for systems that require risk management. Indeed, an interval is5

crucial and offers valuable information that helps for better management than

just predicting a single value.

The Prediction Intervals are well-known tools to provide more information by

quantifying and representing the level of uncertainty associated with predictions.

One existing and popular approach for prediction models without predictive10

distribution (e.g. Random Forest or Gradient Boosting models) is the bootstrap,

starting from the Traditional bootstrap (Efron and Tibshirani [1], 1993; Heskes

[2], 1996) to Improved Bootstrap (Li et al. [3], 2018). It is considered as one of

the most used methods [1] for estimating empirical variances and for constructing

Predictions Intervals, it is claimed to achieve good performance under some15

asymptotic framework.

A set of empirical methods have been proposed for these models to build

Prediction Intervals like the Infinitesimal Jackknife (Wager et al. [4], 2013)

and Jackknife-after-Bootstrap methods (Efron [5], 1992), Quantile Random

Forest (Meinshausen [6], 2006) Out-Of-Bag intervals (Zhang et al. [7], 2018),20

Split Conformal intervals (Lei et al. [8], 2018). In the Deep Learning field,

many recent methods have been also developed to quantify the uncertainty in

Neural networks: The Delta method (Hwang and Ding [9], 1997), Mean-Variance

Estimation (Nix and Weigned [10], 1992), the Bayesian approach (MacKay

[11], 1992; Ghahramani and Gal [12], 2016), Lower Upper Bound Estimation25

(Khosravi et al. [13], 2011a) and Quality-Driven ensembled approach (Pearce et

al. [14], 2018). Most methods estimate the Coverage Probability (CP) (Landon

and Singpurwalla [15], 2008) and the mean Prediction Interval width (MPIW)

(Khosravi et al. [16], 2011a) by using the combinational Coverage Width-based

Criterion (CWC) as a metric to identify model’s parameters or define a loss30

function with a Lagrangian controlling the importance of the width and coverage.

Pang et al. ([17], 2018) suggest the Receiver Operating Characteristic curve

of Prediction Interval (ROC-PI), a graphic indicator that serves as a trade-off

between the intervals width and CP for identifying the best parameters.
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Unlike Ensemble methods or Neural Networks, there exist several prediction35

models with probabilistic framework like the Gaussian Processes (GP) model

(Rasmussen and Williams [18], 2006) which are able to compute an efficient

predictor with associated uncertainty. These models are more suitable for uncer-

tainty quantification as they provide a predictive distribution with both point

prediction and interval estimation and do not require any empirical approach40

such as the bootstrap. In most cases, the Prediction Intervals are generated

with a plug-in method that takes the MLE of the model’s hyperparameters and

substitutes them into the estimated conditional probability distribution. This

approach works well only when the model is well-specified and may fail in case of

model misspecification (F. Bachoc [19], 2013). Calibration of Prediction Intervals45

is little studied in the literature. Lawless and Fredette ([20], 2005) proposed a

frequentist approach on predictive distribution to build and calibrate the Pre-

diction Intervals. However, to the best of our knowledge, this approach has not

yet been extended to models with a predictive distribution and we do not have

any guarantees that it can work in case of misspecified model. Furthermore, the50

full-Bayesian approach gives an estimation of the hyperparameter’s distribution

and makes it possible to build the Prediction Intervals, but it is very complex to

implement typically with an Markov chain Monte Carlo (MCMC) algorithm and

it is sensitive to the choice of the prior distribution of the hyperparameters (J.

Muré [21], 2018). In this work, we propose a method based on Cross-Validation55

(CV) on the GP model to address the problem of model misspecification and

calibrate Prediction Intervals by adjusting the upper and lower bounds to satisfy

the desired level of CP.

The paper is organized as follows. Section 2 formulates the problem of

Prediction Intervals estimation. Section 3 introduces the Gaussian Process60

regression model and its training methods. In Section 4, we present a method

for estimating robust Prediction Intervals supported by theoretical results. We

show in Section 5 the application of this method to academic examples and to

an industrial example. Finally, we present our conclusions in Section 6.
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2. Problem formulation65

We consider n observations of an empirical model or computer code f .

Each observation of the output corresponds to a d-dimensional input vector

x = (x1, . . . , xd)⊤ ∈ D ⊆ Rd. The n points corresponding to the model/code

runs are called an experimental design X =
(
x(1), . . . ,x(n)) where x(i) =

(x(i)
1 , . . . , x

(i)
d )⊤ ∈ D. The outputs are denoted by y =

(
y(1), . . . , y(n)) ∈ Rn with70

y(i) = f(x(i)). We seek to estimate the unobserved function x ∈ D 7→ f(x) from

the data y and make accurate predictions with the associated uncertainty.

Formally, let assume that f is a realization of random process Y and let

Y (x) be the value of model output at a point x ∈ D, let α ∈ [0, 1] describes

the nominal level of confidence. We wish to estimate the interval PI1−α with

respect to the type II CP (conditional coverage given the training set) such that

P (Y (x) ∈ PI1−α(x)|X,y) . (1)

This quantity must be as close as possible to 1 − α. In most cases, PI1−α is

a two-sided interval delimited by two bounds at x ∈ D

PI1−α (x) :=
[
yα/2(x), y1−α/2(x)

]
, (2)

where yα/2(x) = ỹ(x) + zα/2 × σ̃(x) is the lower bound, y1−α/2(x) = ỹ(x) +

z1−α/2 × σ̃(x) is the upper bound, zα/2 (resp. z1−α/2) is the α/2 (resp. 1 −

α/2) quantile of the normalized predictive distribution (e.g. t-distribution for75

regression prediction), ỹ(x) = E(Y (x)|X,y) and σ̃2(x) = Var(Y (x)|X,y) are

the predictive mean and variance respectively.

In the framework of kriging, the prior distribution of the process Y is

Gaussian characterized by a mean and covariance. The Cumulative Distribution

Function (CDF) of the predictive variable Y (x) given X and y is well-defined80

and continuous with the Gaussian distribution. The quantile function is defined

then as the inverse of the CDF and the quantiles zα/2 and z1−α/2 are fully

characterized. Thus, estimating the interval PI1−α in equation (2) is equivalent

to estimate the predictive mean ỹ(x) and variance σ̃2(x).
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Therefore, the objective is to build a surrogate model to estimate correctly85

the upper and lower bounds of Prediction Intervals PI1−α. This goes through

the CV method with respect to the CP. In the following sections, ∥.∥ refers

to the Euclidean norm ∥.∥2 if applied to a vector and to the Frobenius norm,

defined by ∥M∥F =
(
Tr

(
MM⊤))1/2, if applied to a matrix.

3. Modelling with Gaussian Processes90

We use the GP model to learn the unobserved function f . It is a Bayesian non-

parametric regression (see [22] for Bayesian inference) which employs GP prior

over the regression functions. It will be converted into a posterior over functions

once some data has been observed. In the kriging framework, Y is assumed a

priori to be a GP with mean µ(x) and covariance function k(x,x′)+σ2
ϵ1{x = x′}95

for all x,x′ ∈ D. σ2
ϵ ≥ 0 is the variance of measurement error, also called the

nugget effect.

3.1. The mean and covariance functions

The assumption made on the existing knowledge of the model Y and the

mean function µ defines three sub-cases of kriging100

• The Simple Kriging : µ is assumed to be known, usually null µ = 0.

• The Ordinary Kriging : µ is assumed to be constant but unknown.

• The Universal Kriging : µ is assumed to be of the form
∑p
j=1 βjfj−1(x),

where fj are predefined (e.g. polynomial functions f0(x) = 1, fj(x) =

xj , j = 1, . . . , p− 1) and unknown scalar coefficients βj .105

The covariance function k is a map that is symmetric positive semi-definite,

usually stationary k(x,x′) = r(x − x′). The most commonly used kernel in R

is the Matérn kernel class

rνσ2,θ(x− y) = σ2 21−ν

Γ(ν)

(√
2ν |x− y|

θ

)ν

Kν

(√
2ν |x− y|

θ

)
, x, y ∈ R (3)
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where σ2 > 0 is the amplitude, θ > 0 is the length-scale, Γ is the complete

Gamma function and Kν is the modified Bessel function of the second kind.

(σ2, θ) are called hyperparameters. Some particular cases of Matérn kernel are

when ν = 1
2 (Exponential), ν = 3

2 (Matérn 3/2), ν = 5
2 (Matérn 5/2) and ν → ∞

(Gaussian or Squared-Exponential).110

The choice of kernels is important in the kriging scheme and requires prior

knowledge of the smoothness of the function f . For example, the choice of the

Gaussian kernel assumes that the function is very smooth of class C∞ (infinitely

differentiable) which is often too strict as a condition. A common alternative is

the functions Matérn 5/2 or Matérn 3/2 kernel115

Since the product of kernels is a kernel, it is possible to build high-dimensional

kernels. We can obtain more complex covariance models in Rd based on classical

kernels in R. In this paper we consider the Matérn anisotropic geometric model

(radial model),

kradial
σ2,θ (x,x′) = rνσ2,θ

√√√√ d∑
j=1

|xj − x′
j |2

θ2
j

 , (4)

where r is a Matérn kernel R as defined in (3) and θ = (θ1, . . . , θd) the length-120

scale vector. The described method can be applied to other forms of covariance

models like the tensorized product model with d-dimensional kernels or the

Power-Exponential model. In the following sections, instead of writing kσ2,θ, we

denote simply k when there is no possible confusion.

3.2. Gaussian Process Regression Model125

The prior distribution of Y on the learning experimental design X is multi-

variate Gaussian

y|β, σ2,θ, σ2
ϵ ∼ N (Fβ,K), (5)

where

• F = (Fij) ∈ Rn×p is the regression matrix such that Fij = fj(x(i)).

• β = {β1, . . . , βp} ∈ Rp are the regression coefficients.
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• K =
(
k(x(i),x(j))

)
1≤i,j≤n + σ2

ϵ In ∈ Rn×n is the covariance matrix of the

learning design X.130

Hypothesis H1 : In the case of ordinary or universal kriging, we assume that

n ≥ p, F is a full rank matrix, and e ∈ Im F where e = (1, . . . , 1)⊤.

Remark 1. In Ordinary Kriging, the hypothesis H1 is always satisfied. In the

Universal Kriging, the hypothesis e ∈ Im F is satisfied as soon as the constant

function f0(x) = C is included in the chosen predefined functions fi.135

3.3. Prediction

The Gaussian conditioning theorem is useful to deduce the posterior distri-

bution. By considering a new point xnew, it can be shown that the predictive

distribution of Y (xnew) conditioned on the learning sample X,y is also Gaussian

Y (xnew)|X,y, σ2,θ, σ2
ϵ ∼ N

(
ỹ(xnew), σ̃2(xnew)

)
, (6)

where, in case of Ordinary or Universal Kriging140

ỹσ2,θ,σ2
ϵ
(xnew) = ftrend(xnew)⊤β̂ + k(xnew,X)⊤K−1(y − Fβ̂), (7)

σ̃2
σ2,θ,σ2

ϵ
(xnew) = k(xnew,xnew) + σ2

ϵ − k(xnew,X)⊤K−1 k(xnew,X) + (ftrend(xnew)−

FK−1k(xnew,X)
)⊤ (

F⊤K−1F
)−1 (

ftrend(xnew) − F K−1k(xnew,X)
)
,

(8)

and
β̂ =

(
F⊤K−1F

)−1 F⊤K−1y,

ftrend(xnew) = (fj(xnew))p−1
j=0 .

(9)

ỹσ2,θ,σ2
ϵ

(resp. σ̃2
σ2,θ,σ2

ϵ
) will be also denoted by ỹ (resp. σ̃2) without specifying

its dependence on hyperparameters or nugget effect when there is no possible

confusion.

The most outstanding advantage of GP model compared to other models relies

on the previous equations (7) and (8). The predictive distribution can be used for145
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sensitivity analysis (J. Oakley et al. [23], 2004) and uncertainty quantification

instead of costly methods based on Monte Carlo algorithms. Other possible

considerations and extensions of GP modelling are described in (C. Currin et al.

[24], 1991; Rasmussen and Williams [18], 2006).

Given a GP regression model and a point xnew ∈ D, the posterior law of150

prediction in (6) can be standardized into

Z̃(xnew) = Y (xnew) − ỹ(xnew)
σ̃(xnew)

∣∣ X,y, σ2,θ, σ2
ϵ ∼ N (0, 1) . (10)

By considering the standardized variable Z̃(xnew), the α-quantiles zα are

those of the standard normal law : q1−α/2 = Φ−1(1 − α/2) and qα/2 =

Φ−1(α/2) = −q1−α/2 where Φ is the CDF of the standard normal distribu-

tion, such that the Prediction Intervals PI1−α in (2) can be written as155

PI1−α (xnew) =
[
ỹ(xnew) − q1−α/2 × σ̃(xnew); ỹ(xnew) + q1−α/2 × σ̃(xnew)

]
,

(11)

which gives a natural definition for yα/2 and y1−α/2

yα/2 (x) = ỹ(x) − q1−α/2 × σ̃(x) ; y1−α/2 (x) = ỹ(x) + q1−α/2 × σ̃(x). (12)

3.4. Training model with Maximum Likelihood method

Constructing a GP model and computing the kriging mean and variance as

shown in (7) and (8) implies estimating the nugget effect σ2
ϵ and the covariance

parameters (σ2,θ). Here, we assume that σ2
ϵ is known or has been estimated by

the method proposed in [25] for instance.160

The Maximum Likelihood Estimator (MLE) σ̂2
ML and θ̂ML of σ2 and θ is

(σ̂2
ML, θ̂ML) ∈ argminσ2,θ y⊤

(
K−1 − K−1F

(
F⊤K−1F

)−1 F⊤K−1
)

y+log (det K) .

(13)

The MLE method is optimal (F. Bachoc [26], 2013b) when the covariance

function is well-specified (i.e. when the data y comes from a function f that
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is a realization of a GP with covariance function that belongs to the family of

covariance functions in section 3.1).165

However, it may not be the case as the MLE method is poorly robust with

respect to model misspecifications. Besides, training and assessing the quality of

a predictor should not be done on the same data (Tibshirani et al. [27] in chapter

7). In particular, the MLE method does not show how well the model will do

when it is asked to make new predictions for data it has not already seen. The170

CV method represents an alternative to estimate the covariance hyperparameters

(σ2,θ) for prediction purposes and has the advantage of being more efficient and

robust when the covariance function is misspecified (F. Bachoc [26], 2013b).

3.5. Training model with Cross-Validation method for point-wise prediction

We consider the same learning set of n observations Dlearn = (X,y) =175

{(x(i), y(i)), i ∈ {1, . . . , n}} and we assume that the value of σ2
ϵ ∈ [0,+∞)

is known. The Leave-One-Out method (i.e. n-Cross-Validation) consists in

predicting y(i) by building a GP model, denoted GP−i and trained on D−i =

{(x(j), y(j))}j∈{1,...,n}\{i}. The obtained prediction mean and variance are func-

tions of parameters (σ2,θ) as shown in (7) and (8) and are used to assess the180

predictive capability of the global GP model.

In the case of the Leave-One-Out method, the Mean Squared prediction

Error (MSE) is used to assess the quality of the point-wise prediction (See [28]

for more details about this metric) of the GP model, it can be expressed as

LOOMSE(σ2,θ) := 1
n

n∑
i=1

(
y(i) − ỹi

)2
, (14)

where ỹi and σ̃2
i are the Leave-One-Out predictive mean and variance of f(x(i))

by a GP model trained on D−i with the hyperparameters (σ2,θ).

Hypothesis H2 : Let (ei)ni=1 be the canonical basis. We assume that ei ̸∈ Im

F for all i ∈ {1, . . . , n}.185

Let K be the matrix defined by

K = K−1 − K−1F
(
F⊤K−1F

)−1 F⊤K−1. (15)
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For all i ∈ {1, . . . , n}, we have
(
K

)
i,i
> 0 by Lemma 2 (see Appendix A), and, in

the case of Ordinary or Universal Kriging, the Virtual Cross-Validation formulas

(O. Dubrule [29], 1983) of the predictive mean ỹi and variance σ̃2
i are given by

y(i) − ỹi =
(
Ky

)
i(

K
)
i,i

and σ̃2
i = 1(

K
)
i,i

. (16)

With the presence of the nugget effect, the GP regressor does not interpolate

the training data y but approximates them as best as possible. The Leave-

One-Out method looks for the best approximation by minimizing the LOOMSE

criterion. The criterion (14) can be written with explicit quadratic forms in y

(σ̂2
MSE , θ̂MSE) ∈ argminσ2,θ y⊤K Diag

(
K

)−2 K y. (17)

Note that in the absence of the nugget effect σ2
ϵ = 0, K is of the form σ−2Rθ

where Rθ does not depend on σ2, the predictive variance σ̂2
MSE can be computed

explicitly without joint optimization

θ̂MSE ∈ argminθ y⊤Rθ Diag
(
Rθ

)−2 Rθy, (18)

σ̂2
MSE = y⊤Rθ̂MSE

Diag
(

Rθ̂MSE

)−1
Rθ̂MSE

y. (19)

4. Prediction Intervals estimation for Gaussian Processes

The MSE hyperparameters (σ̂2
MSE , θ̂MSE) are obtained from a point-wise190

prediction metric and do not focus on Prediction Intervals neither on quanti-

fying the uncertainty of the model. For these purposes, using the CP is more

appropriate.

The Coverage Probability (CP) is defined as the probability that the Prediction

Interval procedure will produce an interval that captures what it is intended

to capture (Hong et al. [30], 2009). In the Leave-One-Out framework, we keep

the notations of ỹi and σ̃2
i : the predictive mean and variance on x(i) ∈ X

using the learning set D−i = {(x(j), y(j))}j∈{1,...,n}\{i}. We define then the

10



Leave-One-Out CP P̃1−α as the percentage of observed values y belonging to

Prediction Intervals PI1−α of ỹi for all i ∈ {1, . . . , n}

P̃1−α = 1
n

n∑
i=1

1{ỹi + qα/2 × σ̃i < y(i) ≤ ỹi + q1−α/2 × σ̃i}, (20)

where qa is the a-quantile of the standard normal law and 1{A} is the

indicator function of A. We introduce the Heaviside step function h

h(x) = 1{x ≥ 0} =

 1 if x ≥ 0

0 if x < 0
(21)

The Leave-One-Out CP P̃1−α can be written as

P̃1−α = 1
n

n∑
i=1

h

(
q1−α/2 − y(i) − ỹi

σ̃i

)
− 1
n

n∑
i=1

h

(
qα/2 − y(i) − ỹi

σ̃i

)
. (22)

When the model is well-specified, the coverage of the Prediction Intervals

PI1−α is optimal as the predictive distribution is fully characterized by the

Gaussian law (see section 3.1), each term of the right-hand side of (22) is an

unbiased estimator of the probability

P
(
Y (x(i)) − ỹi

σ̃i
≤ q1−α/2

∣∣∣ D−i

)
= 1 − α/2, (23)

and

P
(
Y (x(i)) − ỹi

σ̃i
≤ qα/2

∣∣∣ D−i

)
= α/2. (24)

Conversely, if the model is misspecified, each predictive quantile, needs to be

quantified properly with respect to the normal law quantile so that the CP as195

described in section 2 achieves the desired level.

Let a ∈ (0, 1/2) ∪ (1/2, 1) describe a nominal level of quantile. We define the

quasi-Gaussian proportion ψa as a map from [0,+∞) × (0,+∞)d to [0, 1]

ψa
(
σ2,θ

)
= 1
n

n∑
i=1

h

(
qa − y(i) − ỹi

σ̃i

)
, (25)

where ỹi and σ̃i are the predictive mean and variance on x(i) using the

learning set D−i and the hyperparameters (σ2,θ). Given the Virtual Cross-

Validation formulas (O. Dubrule [29], 1983), ψa can be written in terms of

11



covariance matrix K

ψa(σ2,θ) = 1
n

n∑
i=1

h

qa −
(
Ky

)
i√(

K
)
i,i

 . (26)

The quasi-Gaussian proportion ψa describes how close the a-quantile qa of

the standardized predictive distribution is to the level a, if possible, it should

correspond to a. Therefore, the objective is to fit the hyperparameters (σ2,θ)

according to the quasi-Gaussian proportions and to find two pairs (σ2,θ) and200

(σ2,θ) such that ψ1−α/2(σ2,θ) = 1 − α/2 and ψα/2(σ2,θ) = α/2. This allows

us to get the optimal Leave-One-Out CP by respecting the nominal confidence

level (1 − α), that is P̃1−α = 1 − α.

4.1. Presence of nugget effect

In this section, we assume σ2
ϵ > 0. The quasi-Gaussian proportion ψa is,

however, piecewise constant and takes exactly n values in {k/n, k ∈ {0, . . . , n}}.

We first need to modify the problem ψa
(
σ2,θ

)
= a. Let δ > 0, we define the

continuous functions h−
δ and h+

δ

h+
δ (x) =


1 if x > δ

x/δ if 0 < x ≤ δ

0 otherwise

h−
δ (x) =


1 if x ≥ 0

1 + x/δ if −δ ≤ x < 0

0 otherwise

(27)

If a > 1/2 we define

ψ(δ)
a

(
σ2,θ

)
= 1
n

n∑
i=1

h+
δ

qa −
(
Ky

)
i√(

K
)
i,i

 . (28)

If a < 1/2 we define

ψ(δ)
a

(
σ2,θ

)
= 1
n

n∑
i=1

h−
δ

qa −
(
Ky

)
i√(

K
)
i,i

 . (29)
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Let δ > 0 be a small enough so that δ < qa if a > 1/2 (respectively, δ < q1−a

if a < 1/2) in such a way that h+
δ (qa) = 1 (respectively, h−

δ (qa) = 0). We

consider the problem

ψ(δ)
a

(
σ2,θ

)
= a, (30)

and we denote by Aa,δ the solution set of the problem (30)

Aa,δ :=
{

(σ2,θ) ∈ [0,+∞) × (0,+∞)d, ψ(δ)
a (σ2,θ) = a

}
. (31)

Hypothesis H3 : We assume that kϵ = Card{i ∈ {1, . . . , n}, (Πy)i√
(Π)ii

≤205

σϵqa} < na if a > 1/2 and kϵ = Card{i ∈ {1, . . . , n}, (Πy)i√
(Π)ii

≤ σϵqa} > na

if a < 1/2 where Π is the orthogonal projection matrix on (Im F)⊥ such that

Π = In − F
(
F⊤F

)−1 F⊤ .

Remark 2. The hypothesis H3 is satisfied in Ordinary and Universal Kriging,

except for very special experimental designs X. Moreover, Π is the projection

on the space (Im F)⊥ and is expected to remove the trend of the model. It is

reasonable to think that (Πy)i is centered and that

Card{i ∈ {1, . . . , n}, (Πy)i ≤ 0} ≈ n

2 . (32)

If σ2
ϵ is smaller than σ2, then we have also

Card{i ∈ {1, . . . , n},
(Πy)i√

(Π)ii
≤ σϵqa} ≈ n

2 , (33)

so that the hypothesis H3 is not restrictive.

210

Proposition 1. Let us assume the hypotheses H1, H2 and H3, then Aa,δ is

non-empty.

Proof. In Appendix A.

The challenge now is to identify and choose wisely the optimal solutions

(σ2
opt,θopt) ∈ Aa,δ. Some authors (Khosravi et al. [16], 2011a) suggest the215

mean Prediction Intervals width (MWPI) of Prediction Intervals PI1−α as an

additional constraint to reduce the set of solutions. However, this constraint

13



may not work when dealing with quantile estimation because the lower bound

of the corresponding interval is infinite.

Instead, we will compare these solutions with MLE’s solution (σ̂2
ML, θ̂ML)

(subsection 3.4) or MSE CV solution (σ̂2
MSE , θ̂MSE) (subsection 3.5) and we will

take the closest pair (σ2
opt,θopt) by using an appropriate notion of similarity be-

tween multivariate Gaussian distributions. Ideally, we aim to solve the following

problem

argmin(σ2,θ)∈Aa,δ
d2 (

(σ2,θ), (σ2
0 ,θ0)

)
, (34)

where d is a continuous similarity measure of hyperparameters (σ2,θ) operating220

on the mean vector m and covariance matrix K, and (σ2
0 ,θ0) ∈ {(σ̂2

ML, θ̂ML), (σ̂2
MSE , θ̂MSE)}

as described in (13) or (17).

The resolution of the problem (34) may be too costly and heavy to solve

when the dimension is high, say d ≥ 10. An alternative is to apply the relaxation

method where we redefine this optimization problem of θ from (0,+∞)d to225

(0,+∞) by shifting the length-scale vector θ0 by a parameter λ ∈ (0,+∞).

Let θ0 denote a solution of the problems (13) or (17) and for λ ∈ (0,+∞),

let Hδ(λ) denote the subset

Hδ(λ) = {σ2 ∈ [0,+∞), ψ(δ)
a (σ2, λθ0) = a}. (35)

Hypothesis H4 : The set-valued mapping (the so-called correspondence func-

tion) Hδ : (0,+∞) → P((0,+∞)), where P(S) denotes the power set of a set S,

is lower semi-continuous, that is, for all λ ∈ (0,+∞), for each open set U with

Hδ(λ) ∩ U ̸= ∅, there exists a neighborhood O(λ) such that if λ∗ ∈ O(λ) then230

Hδ(λ∗) ∩ U ̸= ∅ .

In the kriging framework, σ2 should be as small as possible to reduce the

uncertainty of the model, a natural choice of σ2
opt is

∀λ ∈ (0,+∞) : σ2
opt(λ) := min{σ2 ∈ [0,+∞), ψ(δ)

a (σ2, λθ0) = a}. (36)

Proposition 2. The function λ 7→ σ2
opt(λ) is well-defined under hypotheses H1

to H3, and continuous on (0,+∞) under hypothesis H4.
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Proof. In Appendix A.

Concerning the choice of d, one known similarity measure between probability

distributions is the Wasserstein distance, widely used in optimal transportation

problems (see Chapter 6 of [31] for more details). In case of two Gaussian random

distributions N (m1,K1) and N (m2,K2), the second Wasserstein distance is

equal to

W 2
2 (N (m1,K1),N (m2,K2)) = ∥m1−m2∥2+Tr

(
K1 + K2 − 2

√
K1/2

1 K2K1/2
1

)
,

(37)

where, in our setting, m1 = Fβ̂1 =
(
F⊤K−1

1 F
)−1 F⊤K−1

1 y and m2 = Fβ̂2 =235 (
F⊤K−1

2 F
)−1 F⊤K−1

2 y.

Therefore, each couple (σ2,θ) is associated to a Gaussian distribution

N (m,K) and we define the similarity measure d as

d2 (
(σ2,θ), (σ2

0 ,θ0)
)

= W 2
2 (N (m,K),N (m0,K0)) (38)

The choice of the second Wasserstein distance d2 and σ2
opt makes the Pre-

diction Intervals PI1−α shorter without the need for an additional metric like

the MPIW and without affecting significantly the point-wise prediction of the

model, as we will see in section 5.240

The relaxed optimisation problem in (30) for the quantile estimation is given

by the problem Pλ

Pλ : argminλ∈(0,+∞) L(λ) := d2 (
(σ2

opt(λ), λθ0), (σ2
0 ,θ0)

)
(39)

Proposition 3. Under all hypotheses H1 to H4, the function L : (0,+∞) → R+

is continuous and coercive on (0,+∞). The problem Pλ admits at least one

global minimizer λ∗ in (0,+∞).

Proof. In Appendix A.

Remark 3. The coercivity of the function L is guaranteed by the hypotheses H1245

to H3 (see Appendix A). The function L is also upper semi-continuous (J.Zhao
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Figure 1. Illustration of the relaxation effect on the ECDF of the Leave-One-Out standardized

predictive distribution on the quantile of level a = 90%; The relaxed standardized predictive

distribution coincides with the standard normal law distribution on point (qa, a) = (1.28, 0.90)

instead of (ψa, a) = (0.78, 0.90)

Green : standard normal law - MLE standardized Predictive distribution when the model is

well-specified; Orange : MLE standardized predictive distribution when the model is

misspecified; Blue : standardized predictive distribution after relaxing model’s

hyperparameters.

[32], 1997). The hypothesis H4 insures that L is continuous and that there exists

a global minimizer. This hypothesis is not easy to check. If it does not hold or if

it cannot be checked, then it is possible to solve the problem (39) on a discrete

grid with a grid step δ for instance.250

Let β̂opt denote the corresponding regression parameter β̂opt =
(

F⊤K−1
σ2

opt(λ∗),λ∗θ0
F

)−1
F⊤K−1

σ2
opt(λ∗),λ∗θ0)y.

The purpose of this resolution is to create a GP model with hyperparameters

(β̂opt, σ
2
opt(λ∗), λ∗θ0) able to predict the quantile ỹa such that a proportion a

of true values are below ỹa with respect to the constraint of quasi-Gaussian

proportion ψa (see Figure 1). Finally, the Prediction Intervals PI1−α will be255

obtained using two GP models built with the same method, one for the upper

quantile 1 − α/2 with optimal relaxation parameter λ∗ and the other for the

lower quantile of α/2 with parameter λ∗. The CP of PI1−α is optimal and

insured by respecting the coverage of each quantile as shown in (22). In the

following, we call this method Robust Prediction Intervals Estimation (RPIE).260
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4.2. Absence of nugget effect

When the nugget effect is null σ2
ϵ = 0, the set of solutions Aa,δ is still

non-empty because one can show that, for θ in the neighborhood of 0 ∈ Rd,

the problem ψ
(δ)
a (σ2,θ) = a has a solution σ2 ∈ (0,+∞) (see Appendix B). In

particular, the correspondence function Hδ is non-empty valued for λ > 0 small265

enough. But it may be empty valued for some large λ ∈ (0,+∞).

Let λ > 0 and let kλ be the integer defined by

kλ := Card
{
i ∈ {1, . . . , n},

(
Rλθ0y

)
i

≤ 0
}
. (40)

The existence of Hδ(λ) and σ2
opt(λ) depends on the condition kλ ≤ na

that may fail to hold for all λ ∈ (0,+∞). We shall assume some additional

hypotheses on y, indeed, when the model is well-specified, that is, there exist

hyperparameters (β∗, σ
2
∗,θ∗) such that y corresponds to a realization of random

vector Y ∼ N (Fβ∗, σ
2
∗Rθ∗). One has then

Rθ∗Y ∼ N (0, σ2
∗Rθ∗). (41)

and, for a large number of observations n, we can anticipate that

Card
{
i ∈ {1, . . . , n},

(
Rθ∗y

)
i

≤ 0
}

≈ n

2 . (42)

Hence, the condition n/2 < kλ ≤ na is satisfied in a neighborhood of θ∗. One

may think that, for a family of vectors y ∈ Rn, this condition is satisfied around

λ = 1. In addition, if σ2
opt(λ) exists for all λ ∈ (0,+∞), its limit would diverge

when λ → +∞. If it is not the case, the function L is no more continuous, but270

the problem can be solved by the Grid Search method.

5. Numerical Results

5.1. Test cases with analytical functions

In this section, we give three numerical examples to illustrate Prediction

Intervals estimation by the RPIE method. We show that for the Wing-Weight275

function, a well-specified model, the CP is optimal and no optimization is required.
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For Zhou and Morokoff & Caflisch functions where the model is misspecified, we

solve then the problem (39) using the Wasserstein distance. We build specific GP

models following the RPIE method described in section 4 for some level a. The

following metrics : the Leave-One-Out CP P̃1−α defined in (22), the Coverage280

Probability (CP), the mean (MPIW) standard-deviation (SdPIW) of Prediction

Intervals width, and the accuracy Q2 (Kleijnen and Sargent [33], 2000) are used

to asses and compare GP models built either by standard methods (MLE or

MSE CV) or the RPIE method:

Q2 = 1 −

∑ntest
i=1

(
y

(i)
test − ỹi,test

)2

∑ntest
i=1

(
y

(i)
test − y

)2 , (43)

CPa,b = 1
ntest

ntest∑
i=1

1
y

(i)
test∈PIa,b

(
x

(i)
test

), (44)

MPIWa,b = 1
ntest

ntest∑
i=1

∣∣∣PIa,b
(
x

(i)
test

)∣∣∣ , (45)

SdPIWa,b =

√√√√ 1
ntest

ntest∑
i=1

[∣∣PIa,b
(
x

(i)
test

)∣∣ − MPIWa,b

]2
, (46)

where ytest =
(
y

(1)
test, . . . , y

(ntest)
test

)
is the vector to predict of length ntest at285 (

x
(1)
test, . . . ,x

(ntest)
test

)
, PIa,b is the Prediction Interval delimited by the quantiles

qa and qb, and |PIa,b| is the length of the interval.

In particular, CPα/2,1−α/2 = CP1−α denotes the CP of points belonging to

the (1 −α) × 100% Prediction Interval. Analogously, MPIW1−α and SdPIW1−α

refer to the mean and standard deviation of (1 − α) Prediction Intervals length.290

Note that the CP may be different from the Leave-One-Out CP P̃1−α, this

case can happen when the distributions of the training and validation sets are

different. However, a Leave-One-Out CP P̃1−α close to 1 − α insures that, if the

distributions are similar, CP1−α is also close to 1 − α.

This subsection provides results obtained on d = 10-dimensional GP with295

constant mean function (Ordinary Kriging). The value of δ is fixed at δ = 10−2.
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Example 1 : Well-specified model - The Wing Weight function

The Wing Weight function is a model in dimension d = 10 proposed by

Forrester et al. ([34], 2008) that estimates the weight of a light aircraft wing.

For an input vector x ∈ R10, the response y is :300

f(x) = 0.036x0.758
1 x0.0035

2

(
x3

cos2 (x4)

)0.6
x0.006

5 x0.04
6

(
100 x7

cos (x4)

)−0.3
(x8x9)0.49+x1x10.

(47)

The components xi are assumed to vary over the ranges given in Table 1 (see

[34] and [35] for details).

Table 1. The input variables xj and their domain ranges [aj ; bj ]

Component Domain Component Domain

x1 [150; 200] x6 [0.5; 1]

x2 [220; 300] x7 [0.08; 0.18]

x3 [6, 10] x8 [2.5; 6]

x4 [−10; 10] x9 [1700, 2500]

x5 [16; 45] x10 [0.025; 0.08]

We create an experimental design X of n = 600 observations and d = 10

variables where observations x(i) =
(
x

(i)
1 , . . . , x

(i)
d

)
are sampled i.i.d with uniform

distribution over
⊗d

j=1[aj , bj ]. We generate the response y =
(
y(1), . . . , y(n))

305

such that y(i) = f(x(i)) + ϵ(i) with f defined in (47) and ϵ(i) are sampled i.i.d.

with the distribution N (0, σ2
ϵ = 16). Here the nugget effect is estimated with

the methodology described in [25] and the covariance kernel is the Matérn 3/2.

The GP model is trained on 75% of the data (25% of data is left for validation).

The diagnostics of the model are presented in Table 3 with the metrics described310

above. The accuracy Q2 is correct for the MLE solution but the MSE CV does

much better, an expected result since the MSE CV method is more adapted
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Table 3. Diagnostics of the model built by MLE and CV methods ; confidence level

1 − α = 80%

MLE (section 3.4) MSE CV (section 3.5)

Q2 0.583 0.769

P̃1−α 80.2 95.6

Q2: Accuracy and P̃1−α: The Leave-One-Out CP in %.

for point-wise prediction criterion. However, the Leave-One-Out CP P̃1−α is

far from the required level, which means that they were poorly estimated with

point-wise prediction criterion.315

Table 4. Quantile estimations for MLE GP model on the training set (Quasi-Gaussian

proportion) and validation set (CP)

Confidence level 1 − α = 90% Confidence level 1 − α = 80%

ψ1−α/2 93.3 89.1

ψα/2 2.89 8.89

CP−∞,1−α/2 94.6 94.0

CP−∞,α/2 4.67 14.0

P̃1−α 90.4 80.2

CP: Coverage Probability, ψ: Quasi-Gaussian proportion and P̃1−α: The Leave-One-Out CP; in %.

Table 4 shows in particular that the model is well-specified for Matérn 3/2

correlation kernel when applying the MLE method since the CP is optimal and

close to required level, the quantiles have been correctly estimated despite a

little difference from the true bound.

Example 1 is a case of well-specified model in which the coverage probabilities320

obtained by the MLE method are good and the RPIE method does not bring
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additional value.

Example 2 : Misspecified model with noise - Morokoff & Caflisch

function -

We consider the Morokoff and Caflisch ([36], 1995) function defined on [0, 1]d325

by

f(x) = 1
2

(
1 + 1

d

)d d∏
i=1

(xi)1/d. (48)

In Example 2, we consider an experimental design X of n = 600 ob-

servations and d = 10 correlated inputs. Each observation has the form

x(i) =
(

Φ(z(i)
1 ), . . . ,Φ(z(i)

d )
)

∈ Rd, Φ is the CDF of the standard normal

distribution, z(i) are sampled from the multivariate distribution N (0,C) and

C ∈ Rd×d is the following covariance matrix :

C =



1 0.90 0 0 0 0.50 −0.30 0 0 0

0.90 1 0 0 0 0 0 0.10 0 0

0 0 1 0 −0.30 0.10 0.40 0 0.05 0

0 0 0 1 0.40 0 0 −0.35 0 0

0 0 −0.30 0.40 1 0 0 0 0.10 0

0.05 0 0.10 0 0 1 0 0 0 0

−0.30 0 0.40 0 0 0 1 0 0 −0.30

0 0.1 0 −0.35 0 0 0 1 0 0

0 0 0.05 0 0.10 0 0 0 1 0

0 0 0 0 0 0. −0.3 0 0 1



.

(49)

The response vector y is generated as y(i) = f(x(i))+ϵ(i) with f the Morokoff

& Caflisch function defined in (48) and ϵ(i) are sampled i.i.d. with the distribution

N (0, σ2
ϵ = 10−4). We consider the Matérn anisotropic geometric correlation

model with smoothness 5/2 as covariance model and we study the Prediction330

Interval’s problem with a nugget effect estimated with the methodology [25].

The model is not well-specified as example 1. Table 5 summarizes the results

of MLE and MSE CV estimations. The accuracy Q2 of both models is satisfactory
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Table 5. Results for MLE and MSE CV methods for Morokoff & Caflisch function (48) ;

confidence level 1 − α = 90%

MLE (section 3.4) MSE CV (section 3.5)

Q2 0.936 0.949

P̃1−α 94.3 99.1

CP1−α 95.3 98.7

MPIW1−α 1.49 10−1 1.66 10−1

SdPIW1−α 7.30 10−3 5.01 10−3

Q2: Accuracy; CP1−α: Coverage Probability in %; P̃1−α: The Leave-One-Out CP in %.
MPIW: Mean of Prediction Interval widths and SdPIW: standard deviation of Prediction Interval

widths.

and is improved when applying the MSE CV method. However, the Prediction

Intervals are overestimated for both models and the CP does not correspond to335

the required level of 90%, the MSE CV model performs even worse.

Table 6. Performances of the models Pα/2 and P1−α/2 for Morokoff & Caflisch function (48)

; confidence level 1 − α = 90%

Pα/2 model P1−α/2 model

MLE θ̂ML MSE CV θ̂MSE MLE θ̂ML MSE CV θ̂MSE

λ∗ 1.03 1.36 1.73 2.21

P̃1−α 94.0 93.8 83.7 84.3

CP1−α 94.0 94.7 85.3 90.0

λ∗: Optimal relaxation parameter; CP: Coverage Probability in % and P̃1−α: The Leave-One-Out
CP in %.

We now address the problem of Prediction Intervals Estimation for each

solution of MLE θ̂ML and MSE CV θ̂MSE . We consider the upper and lower

22



bounds 1 −α/2 = 95% and α/2 = 5%. We apply the RPIE method as described

in section 4 and we solve the problem (39). With the optimal values λ∗ and340

λ∗, we build two GP models, denoted P1−α/2 and Pα/2. Figure 2 shows the

variation of the function L for Morokoff & Caflisch function while resolving the

problem (39) on the upper bound 1 − α/2 = 95%, it illustrates the statement of

Proposition 3 : L is continuous and coercive on (0,+∞) and reaches a global

minimum.345
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Figure 2. : The variation of the relaxed Wasserstein distance L for Morokoff & Caflisch

function; a = 1 − α/2 = 95%

The optimal relaxation parameters and the coverage probabilities of Pα/2

and P1−α/2 models are given in Table 6. The relaxation parameter λ∗ is closer

to 1 for the Pα/2 model than it is for the P1−α/2 model. It means that the upper

bounds of Prediction Intervals of the standards methods (MLE and MSE CV)

were poorly estimated compared to the lower bounds. Note that each model is350

built to predict either the upper (1−α/2 = 95%) or the lower bound (α/2 = 5%).

As a consequence, the poor estimation of the other bound does not affect the

RPIE method.

We consider now the Prediction Intervals whose upper and lower bounds are

estimated respectively by P1−α/2 and Pα/2 models. In table 7, one observes that355

these Prediction Intervals are twice shorter compared to those of MLE or CV
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Table 7. Performances of Prediction Intervals obtained by the RPIE method for Morokoff &

Caflisch function (48) ; confidence level 1 − α = 90%

MLE θ̂ML MSE CV θ̂MSE

P̃1−α 90.0 90.0

CP1−α 88.7 92.0

MPIW1−α 5.57 10−2 6.18 10−2

SdPIW1−α 1.19 10−2 1.53 10−2

P̃1−α: The Leave-One-Out CP in %; CP: coverage Probability in %; MPIW: Mean of Prediction
Interval widths and SdPIW: standard deviation of Prediction Interval widths.

MSE models, the coverage rate of 1 − α = 90% on the training set is achieved,

which is the main objective of the RPIE method, and the CP on the validation

set is close to this level.

Example 2 is a case of misspecified model with noise in which the CP obtained360

by MLE and MSE CV methods are not good and the RPIE method reduces

Prediction Intervals length and improves the robustness of Prediction Intervals

in such way that they cover as best as possible the optimal coverage rate.

Example 3 : Misspecified model without noise - Zhou function -

The Zhou ([37], 1998) function, considered initially for the numerical integra-

tion of spiky functions, is defined on [0, 1]d by

f(x) = 10d
2

[
ϕ

(
10

(
x − 1

3
))

+ ϕ
(

10
(
x − 2

3
))]

, (50)

where

ϕ(x) = (2π)−d/2 exp
(
−0.5∥x∥2)

. (51)

In Example 3, we create an experimental design X similar to Example 1, con-

taining n = 600 and d = 10 variables where observations x(i) =
(
x

(i)
1 , . . . , x

(i)
d

)
are sampled independently with uniform distribution over [0, 1]d. As the Zhou

function in (50) takes some high values, we generate the response y by applying
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a logarithmic transformation :

y(i) = log f(x(i))/(d log 10). (52)

Note that there is no measurement noise here. We will address two situations365

: In the first one, we assume that we know that there is no measurement noise,

we impose that there is no nugget effect in the model σ2
ϵ = 0 and we consider

the Exponential anisotropic geometric correlation model (ν = 1/2) as covariance

model. In the second situation, we assume that we do not know whether there is

measurement noise and we estimate the nugget effect of the model. We consider370

consequently the Matérn 3/2 anisotropic geometric correlation model (ν = 3/2),

a reasonable choice for a smooth covariance model when assuming a nugget

effect.

Table 8. Results for MLE and MSE CV methods for Zhou function (50) in the first setting

(σ2
ϵ = 0) ; confidence level 1 − α = 90%

MLE (section 3.4) MSE CV (section 3.5)

Q2 0.887 0.889

P̃1−α 98.6 0

CP1−α 97.3 0.67

MPIW1−α 8.67 10−1 1.27 10−3

SdPIW1−α 6.10 10−2 8.95 10−5

Q2: Accuracy; CP1−α: Coverage Probability in %; P̃1−α: The Leave-One-Out CP in %.
MPIW: Mean of Prediction Interval widths and SdPIW: standard deviation of Prediction Interval

widths.

In Table 8, both models are good in terms of accuracy Q2 with small

advantage for the MSE CV method but none of them satisfy the required level375

of CP, especially the MSE CV model with a extremely low CP.

When proceeding similarly as Example 2 to build robust Prediction Intervals

by the RPIE model, the result is striking in Table 9 : the MSE CV solution

θ̂MSE is shifted to small values (e.g. λ∗ = 2.41 10−2 for the lower bound
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Table 9. Performances of Prediction Intervals obtained by the RPIE method for Zhou function

(50) in the first setting (σ2
ϵ = 0); confidence level 1 − α = 90%

MLE θ̂ML MSE CV θ̂MSE

P̃1−α 90.0 90.0

CP1−α 87.3 86.7

MPIW1−α 7.62 10−1 5.68 10−1

SdPIW1−α 5.36 10−2 3.98 10−2

P̃1−α: The Leave-One-Out CP in %; CP: coverage Probability in %; ; MPIW: Mean of Prediction
Interval widths and SdPIW: standard deviation of Prediction Interval widths.

α/2), meaning that the amplitude σ̂2
MSE was largely underestimated and the380

built Prediction Intervals are now 400 times larger. Table 9 also shows that

the coverage probabilities for the validation set are close to their desired value

1 − α = 90%.

In the second setting, we consider the estimated nugget effect σ̂2
ϵ = 1.89 10−2

using [25]. The results of MLE and MSE CV methods are shown in Table 10385

: considering the nugget effect allows an increase of 4% to 5% of the accuracy

Q2. Table 11 shows the obtained Prediction Intervals when applying the RPIE

method. We reduce their width, 4 times shorter than Prediction Intervals of

the MSE CV solution, and twice shorter than Prediction Intervals of the MLE

solution. One can notice also a decrease of 50% of the MPIW compared to the390

first setting, all this while maintaining an optimal coverage of 1 − α = 90%.

Example 3 illustrates a case of misspecified model without noise where the

RPIE method adjusts Prediction Intervals length and improves the robustness

of Prediction Intervals so that CP is respected. One can conclude that it is

preferable to consider a nugget effect for shorter Prediction Intervals and for395

better accuracy if one is interested in making accurate predictions with standard

methods.
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Table 10. Results for MLE and MSE CV methods for Zhou function (50) in the second setting

(σ̂2
ϵ = 1.89 10−2) ; confidence level 1 − α = 90%

MLE (section 3.4) MSE CV (section 3.5)

Q2 0.938 0.929

P̃1−α 98.6 100

CP1−α 100 100

MPIW1−α 6.64 10−1 1.31

SdPIW1−α 7.04 10−2 2.69 10−1

Q2: Accuracy; CP1−α: Coverage Probability in %; P̃1−α: The Leave-One-Out CP in %.
MPIW: Mean of Prediction Interval widths and SdPIW: standard deviation of Prediction Interval

widths.

Table 11. Performances of Prediction Intervals obtained by the RPIE method for Zhou

function (50) in the second setting (σ̂2
ϵ = 1.89 10−2) ; confidence level 1 − α = 90%

MLE θ̂ML MSE CV θ̂MSE

P̃1−α 90.0 90.0

CP1−α 84.7 86.7

MPIW1−α 3.64 10−1 2.93 10−1

SdPIW1−α 6.61 10−2 5.21 10−2

P̃1−α: The Leave-One-Out CP in %; CP: coverage Probability in %; MPIW: Mean of Prediction
Interval widths and SdPIW: standard deviation of Prediction Interval widths.

5.2. Application to Oil & Gas production for future wells

In this section, we focus on a production forecast use-case for unconventional

oil and gas wells and we show that the RPIE method can be used to build two400

models estimating the quantiles of level α/2 = 10% and 1 − α/2 = 90%.

A fundamental challenge of oil and gas companies is to predict how much

oil and gas they will produce in the future. It drives both their exploration

27



and development strategy. However, forecasting a well future production is

challenging because subsurface reservoirs properties are never fully known. This405

makes estimating well production with their associated uncertainty a crucial

task. The agencies PRMS and SEC ([38], [39]) define specific rules 1P/2P/3P

for reserves estimates based on quantile estimate :

• 1P: 90% of wells produce more than 1P predictions (proven).

• 2P: 50% of wells produce more than 2P predictions (probable).410

• 3P: 10% of wells produce more than 3P predictions (possible).

These rules are to be disclosed to security investors for publicly traded oil

and gas companies and aim to provide investors with consistent information and

associated value assessments. Many Machine Learning algorithms have shown

their efficiency in estimating the median 2P but failed to estimate 1P and 3P.415

Thus, the objective of this study is to build a proper estimation of the quantiles

p0.90 and p0.10 by applying the RPIE method described in section 4.

Our dataset, field data, is derived from unconventional wells localized in

the Utica shale oil reservoir, located in the north-east of the United States.

It contains approximately n = 1850 wells and d = 12 variables, including420

localization, Cumulative Production over 12 months, completion design and

exploitation conditions. The raw dataset can be found at the Ohio Oil & Gas

well locator of the Ohio Department of Natural Resources [40].

We standardized the data (X,y) and we divided into a 60% − 20% − 20%

partition of three datasets : a training set and two validation sets. The response425

y (Cumulative Production over 12 months) is noisy due to the uncertainty of the

reservoir parameters in the field. The nugget effect σ2
ϵ is unknown but estimated

to σ̂2
ϵ = 0.16 using the method of [25].

Table 12 shows the performances of the GP models trained by MLE and

MSE CV methods compared with two other statistical models : Random Forest430

and Gradient Boosting whose Prediction Intervals are built using the Bootstrap

method. Here we consider the Prediction Intervals of level 1 − α = 80%: the
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lower bound is the 10% quantile (p0.10) and the upper bound the 90% quantile

(p0.90) of the predictive distribution.

Table 12. Accuracy, CP and Computing time results obtained for GP model, Random Forest

and Gradient Boosting ; confidence level 1 − α = 80%

MLE MSE CV Random Forest Gradient Boosting

Q2 0.88 0.86 0.87 0.88

CP1−α 92.8 93.2 98.1 49.8

Ct 207.5 507.2 2.33 96.3

MPIW1−α 1.18 1.20 1.52 0.48

SdPIW1−α 0.21 0.16 0.29 0.22

Q2: Accuracy; CP: Coverage Probability in % and Ct: Computing time (s).
MPIW: Mean of Prediction Interval widths and SdPIW: standard deviation of Prediction Interval

widths.

The accuracy of the MLE model is 88% against an accuracy of 86% for435

MSE CV model, both models have approximately the same accuracy as other

models like Random Forest or Gradient Boosting. Furthermore, the CP of the

Prediction Intervals of 1 − α = 80% is not satisfactory but it is quite reasonable

for MLE model compared to Random Forest (overestimated Prediction Intervals)

or Gradient Boosting (underestimated Prediction Intervals). Finally, it appears440

that the GP model requires some computing resources to be built and to estimate

its hyperparameters by MLE or MSE CV methods.

The MLE’s solution is defined as reference θ0 = θ̂ML in the optimization

problem (39) for the quantiles α/2 = 10% and 1 − α/2 = 90% and we build

robust Prediction Intervals confidence level 1 − α = 80% with the RPIE method445

as described in section 4.

In Table 13, the Relaxation parameter λ∗ is larger than 1 and is up to 6.28

for P10 model, this means that the initial vector length θ̂ML is underestimated

especially for the lower bound of 10%. A reason could be related to the fact
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Table 13. Performances of Prediction Intervals estimated by P90 and P10 models and the

RPIE method on production data ; confidence level 1 − α = 80%.

P90 model P10 model RPIE

λ∗ 4.50 6.88 -

P̃1−α 82.2 76.9 79.9

CPVal,1
1−α 81.2 78.2 81.0

CPVal,2
1−α 85.6 80.3 83.2

λ∗: Relaxation parameter; P̃1−α: The Leave-One-Out CP in % and CP: Coverage Probability in %.

Table 14. Comparison of the mean and standard-deviation Prediction Interval width of MLE

and RPIE methods ; confidence level 1 − α = 80%.

MLE method RPIE method

MPIWVal,1
1−α 1.18 1.06

SdPIWVal,1
1−α 0.21 0.01

MPIWVal,2
1−α 1.17 1.06

SdPIWVal,2
1−α 0.17 0.01

MPIW : Mean Prediction Intervals width and SdPIW : standard deviation Prediction Intervals
width.

the MLE model predicts accurately "poor" wells and overfits to predict "good"450

wells which makes the lower bound overestimated as it can be seen in figure 3.

Another reason may be the non stationarity of some well characteristics that

strongly depend on the field (e.g. Localization), it may be recommended to take

more complex and tensorized covariance functions for these variables.

When considering Prediction Intervals, the CP is optimal among the training455

set and is close to 1 − α = 80% for both validation sets. Therefore, we fulfill the

objective of estimating the upper bound and lower bound, the obtained quantiles
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p0.90 and p0.10 respect 1P and 3P rules as mentioned above. Finally, one can

also notice that Prediction Intervals in (3b) and (3d) are not homogeneous

and some of them are longer, the RPIE method makes them less wider and460

more homogeneous as it can be seen in the evolution of the standard deviation

width SdPIW between the two models. Note that in sub-figures (3b) and

(3d), MeanPred correspond to the centers of Prediction Intervals obtained by

RPIE method unlike sub-figures (3a) and (3c) where they represent the mean

predictions of the MLE model.465

6. Conclusion

In this paper, we have introduced a new approach for Prediction Intervals es-

timation based on the Cross-Validation method. We used the Gaussian Processes

model because the predictive distribution at a new point is completely charac-

terized by Gaussian law. We addressed an optimization problem for model’s470

hyperparameters estimation by considering the notion of Coverage Probability.

The optimal hyperparameters were identified by minimizing the Wasserstein

distance between the Gaussian distribution with the hyperparameters determined

by Cross Validation , and the Gaussian distribution with hyperparameters achiev-

ing the desired Coverage Probability. This method is relevant when the model is475

misspecified. It insures an optimal Leave-One-Out coverage probability for the

training set. It also achieves a reasonable coverage probability for the validation

set when it is available. It can be also extended to other statistical models with a

predictive distribution but more detailed work is needed to consider the influence

of hyperparameters on Prediction Interval’s coverage and solve the optimization480

problem more efficiently in these cases.
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APPENDIX A. PROOFS OF PROPOSITIONS 1 - 3

PRELIMINARY LEMMAS

Lemma 1. Let F be a full rank matrix (hypothesis H1), let K be a positive

definite matrix and let K defined by K = K−1
(

In − F
(
F⊤K−1F

)−1 F⊤K−1
)

635

then Ker K = Im F and K is singular.

Proof. Let K be the matrix defined above. Suppose that x ∈ Im F, then there ex-

ists y such that x = Fy, and Kx = K−1
(

Fy − F
(
F⊤K−1F

)−1 F⊤K−1Fy
)

=

K−1 (Fy − Fy) = 0. Thus x ∈ Ker K.

If x ∈ Ker K, then K Kx = 0, and x = F(F⊤K−1F)−1F⊤K−1x = Fx′ ∈640

Im F.

In case of Ordinary or Universal kriging, p = rank(F) = dim(Ker K) ≥ 1

which means that K is not invertible.

Lemma 2 (De Oliveira [41], 2007). Under the hypotheses of Lemma 1 and given

the full rank regression matrix F, there exists a matrix W ∈ Rn×(n−p) satisfying

:

W⊤W = In−p and F⊤W = Op×(n−p), (.1)

K = W
(
W⊤KW

)−1 W⊤. (.2)

Lemma 3. Under the hypotheses of Lemma 1, if additionally hypothesis H2

holds true, then Kii > 0 for all i ∈ {1, . . . , n}.645

Proof. K is a positive semi-definite matrix by Lemma 2 and we can write

K =
n∑
j=1

λjuju⊤
j , (.3)

with λj ≥ 0 the eigenvalues of K and (uj)nj=1 the orthonormal basis of the

eigenvectors. We have

Kii = e⊤
i Kei =

n∑
j=1

λj(u⊤
j ei)2. (.4)
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If Kii = 0, then u⊤
j ei = 0 for all j such that λj > 0. Therefore

Kei =
n∑
j=1

λj(u⊤
j ei)uj = 0, (.5)

which shows that ei ∈ Ker K, that is, ei ∈ Im F by Lemma 1.

Lemma 4. Let Π = WW⊤ = In − F
(
F⊤F

)−1 F⊤ the orthogonal projection

matrix on (Im F)⊥ then, with the hypothesis H2, (Π)i,i ≠ 0 for all i ∈ {1, . . . , n}.650

Proof. This lemma is a direct application of Lemma 3 by choosing K = In.

PROOF OF PROPOSITION 1

From the preliminary lemmas, we show now the stronger result (stronger

than Proposition 1):

Lemma 5. Under the hypotheses H1 − H3, for any θ ∈ (0,+∞)d, there exists655

σ2 ∈ (0,+∞) such that (σ2,θ) ∈ Aa,δ.

Proof. Here σ2
ϵ > 0. Let us assume that a > 1/2 (i.e. qa > 0), then for θ fixed

in (0,+∞)d, the limit of K when σ2 → 0 is well defined and is equal to

lim
σ2→0

K = σ−2
ϵ WW⊤ = σ−2

ϵ Π. (.6)

By the hypothesis H2 and from Lemma 4 we can write for all i ∈ {1, . . . , n}(
Ky

)
i√(

K
)
i,i

σ2→0−→ 1
σϵ

(Πy)i√
(Π)i,i

. (.7)

Since h+
δ ≤ h for all δ > 0, then

lim
σ2→0

ψ(δ)
a (σ2,θ) ≤ lim

σ2→0
ψa(σ2,θ) = 1

n

n∑
i=1

h

qa − 1
σϵ

(Πy)i√
(Π)i,i

 = kϵ
n

(.8)

When σ2 → +∞, we have

K σ2→+∞∼ σ−2 Rθ , (.9)

where

Rθ = W
(
W⊤RθW

)−1 W⊤. (.10)
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By lemma 3, we have
(
Rθ

)
i,i
> 0 for all i ∈ {1, . . . , n} and we obtain that

1
σ

(
Rθy

)
i√(

Rθ

)
i,i

σ2→+∞−→ 0. (.11)

With δ small enough satisfying δ < qa, we obtain

ψ(δ)
a (σ2,θ) σ

2→+∞−→ 1
n

n∑
i=1

h+
δ (qa) = 1. (.12)

Since kϵ < an < n by hypothesis H3 and since ψ
(δ)
a is continuous, the

Intermediate Value Theorem gives the existence of σ2
δ ∈ (0,+∞) such that

ψ(δ)
a (σ2

δ ,θ) = a, (.13)

which gives the desired result.

Similarly, if a < a/2 then qa < 0 and

lim
σ2→0

ψ(δ)
a (σ2,θ) ≥ lim

σ2→0
ψa(σ2,θ) = 1

n

n∑
i=1

h

qa − 1
σϵ

(Πy)i√
(Π)i,i

 = kϵ
n
> a.

(.14)

When δ < q1−a, one obtains

ψ(δ)
a (σ2,θ) σ

2→+∞−→ 1
n

n∑
i=1

h−
δ (qa) = 0. (.15)

By the hypothesis H3, one has the existence of σ2
δ ∈ (0,+∞) such that

ψ(δ)
a (σ2

δ ,θ) = a, (.16)

which completes the proof of the lemma.

PROOF OF PROPOSITION 2

The existence of σ2
opt(λ) for all λ ∈ (0,+∞) results directly from the following660

lemma 6 :

Lemma 6. For all λ ∈ (0,+∞), Hδ(λ) is a non-empty and compact subset of

R+ i.e. Hδ is compact-valued.
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Proof. By Lemma 5, Hδ(λ) is non-empty for all λ ∈ (0,+∞).

Hδ(λ) is closed since the functions h+
δ , h

−
δ are continuous and the map665

(σ2,θ) 7→ K is also continuous for all (σ2,θ) by the continuity of the kernel

function kν.,.(x,x′) for any ν > 0 and x,x′ ∈ D.

We now prove that Hδ(λ) is bounded. Let us assume that a ∈ (1/2, 1). If

Hδ(λ) is not bounded then there exists a sequence
(
σ2
m

)
m∈N of Hδ(λ) such that

lim
m→+∞

σ2
m = +∞ and, by continuity of ψ(δ)

a

a = lim
m→+∞

ψ(δ)
a (σ2

m, λθ0) = 1
n

n∑
i=1

h+
δ (qa) = 1, (.17)

which is a contradiction. Therefore, Hδ(λ) is closed and bounded, Hδ(λ) is

compact.

σ2
opt(λ) can be seen the solution of a constrained maximization problem670

σ2
opt(λ) = − max

σ2∈Hδ(λ)
u(σ2, λ), λ ∈ (0,+∞), (.18)

where u(σ2, λ) = −σ2 is a continuous function. Hδ is non-empty-valued and

compact-valued by Lemma 6, upper semi-continuous since ψ(δ)
a is continuous

on [0,+∞) × (0,+∞)d, and continuous if the hypothesis H4 is satisfied, the

Maximum theorem (C. Berge [42], 1963, p. 116) provides the continuity of σ2
opt

on (0,+∞).675

PROOF OF PROPOSITION 3

Let θ0 be a solution of one of the problems described in (13) or (17). The

continuity of L on (0,+∞) follows from the continuity of the trace function Tr(.),

the continuity of the map (σ2,θ) 7→ K and the continuity of σ2
opt by proposition

2.680

Assume that lim
λ→+∞

σ2
opt(λ) ̸= +∞, then there exists M > 0 such that for all

λ > 0 there exists λ′ ≥ λ and σ2
opt(λ′) ≤ M . Hence, we can recursively build a

sequence (λm)m∈N of integers such that λm+1 ≥ λm + 1 and σ2
opt(λm) ≤ M for

all m ∈ N.
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By the Bolzano-Weierstrass theorem, we extract a convergent sub-sequence685 (
λϕ(m)

)
m∈N where ϕ : N → N such that σ2

opt(λϕ(m))
m→+∞−→ σ2

∞ < +∞ and

Kσ2
opt(λϕ(m)),λϕ(m)θ0

m→+∞−→ σ2
∞J + σ2

ϵ In = K∞. (.19)

When there is a nugget effect σ2
ϵ > 0, the limit of Km := Kσ2

opt(λϕ(m)),λϕ(m)θ0

when m → +∞ exists because the matrix K∞ is nonsingular by the auxiliary

fact 1 of Berger et al. ([43], 2001)

det K∞ =
(
σ2
ϵ

σ2
∞

)n (
1 + σ2

ϵ

σ2
∞

e⊤Ine
)

=
(
σ2
ϵ

σ2
∞

)n (
1 + n

σ2
ϵ

σ2
∞

)
> 0. (.20)

From hypothesis H1, e is a column of F and we can prove that

Km
m→+∞−→ K∞ : = W

(
W⊤ (

σ2
∞J + σ2

ϵ In
)

W
)−1 W⊤

= σ−2
ϵ W

(
W⊤W

)−1 W⊤ = σ−2
ϵ Π.

(.21)

By hypothesis H2, the Leave-One-Out formulas (16) give for all i ∈ {1, . . . , n}

(
Kmy

)
i√(

Km

)
i,i

m→+∞−→ 1
σϵ

(Πy)i√
(Π)i,i

. (.22)

If a > 1/2 for example and by definition of σ2
opt(λϕ(m)), one obtains

a = 1
n

n∑
i=1

h+
δ

qa −
(
Kmy

)
i√(

Km

)
i,i


m→+∞−→ 1

n

n∑
i=1

h+
δ

qa −
(
K∞y

)
i√(

K∞
)
i,i


= 1
n

n∑
i=1

h+
δ

qa − 1
σϵ

(Πy)i√
(Π)i,i

 = kϵ
n
< a,

(.23)

which is contradictory. Therefore, lim
λ→+∞

σ2
opt(λ) = +∞ and L is coercive.

The case a < 1/2 can be addressed in the same way.
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APPENDIX B. THE NO-NUGGET CASE

PROOF OF THE EXISTENCE OF A SOLUTION TO THE PROBLEM (30)690

In the absence of σ2
ϵ = 0, it follows from the Leave-One-Out formulas that,

for all i ∈ {1, . . . , n} (
Ky

)
i√(

K
)
i,i

= 1
σ

(
Rθy

)
i√(

Rθ

)
i,i

, (.24)

which is a monotonic function in σ2 when θ is fixed in (0,∞)d.

Let θ be fixed in (0,+∞)d and let a > 1/2. The proportion ψ
(δ)
a (σ2,θ) has

the limit

lim
σ2→+∞

ψ(δ)
a (σ2,θ) = 1

n

n∑
i=1

h+
δ (qa) = 1, (.25)

and, if σ2 → 0, it has the limit

lim
σ2→0

ψ(δ)
a (σ2,θ) = 1

n
Card

{
i ∈ {1, . . . , n},

(
Rθy

)
i

≤ 0
}

= kθ

n
. (.26)

Let θ denote the norm of θ (i.e. θ = ∥θ∥) and consider the set J =

{i ∈ {1, . . . , n}, (Πy)i ≤ 0}. For i ∈ J c, one has (Πy)i > 0, and, since Rθ

converges to Π when θ → 0

∀i ∈ J c :
(
Rθy

)
i

θ→0−→ (Πy)i > 0 (.27)

It results that, there exists θc > 0 such that if θ ∈ Br(0, θc) (the open ball

of radius θc centered at 0) then
(
Rθy

)
i
> 0 for any i ∈ J c. Consequently, one

gets for any θ ∈ Br(0, θc)

Card
{
i ∈ {1, . . . , n},

(
Rθy

)
i
> 0

}
≥ Card(J c) = n− kϵ. (.28)

Hence

kθ = Card
{
i ∈ {1, . . . , n},

(
Rθy

)
i

≤ 0
}

≤ kϵ. (.29)

Therefore, if θ belongs to a neighborhood of 0, the condition kθ ≤ kϵ is

satisfied and, under the hypothesis H3, the set of solutions Aa,δ is also non-empty.
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PROOF OF THE COERCIVITY

Let assume that, under some conditions on y, λ 7→ σ2
opt(λ) is well-defined

for all λ ∈ (0,+∞). In the absence of nugget effect σ2
ϵ = 0, the limit of Rλθ0

does not exist when λ → +∞. Still, we can assume that the correlation matrix

Rλθ0 satisfies (Berger et al. [43], 2001)

Rλθ0 = J + gλ (D0 + o(1)) , (.30)

where695

– λ 7→ gλ is a continuous function such that lim
λ→+∞

gλ = 0.

– D0 and J = ee⊤ are fixed symmetric matrices.

D0 can be singular or nonsingular depending on the chosen kernel k. A

review of Yagloom’s book ([44], 1989) shows that D0 is nonsingular only for

Power-Exponential (q < 2) and Matérn kernels with smoothness parameter ν < 1700

like the Exponential kernel (ν = 1/2 in (3)). For the rest of Matérn kernels with

smoothness parameter ν ≥ 1 D0 becomes singular.

Case 1 : D0 is nonsingular .

In this case, let Dλ = gλ D0 (1 + o(1)) such that

Rλθ0 = J + Dλ. (.31)

We consider the matrix Rλθ0 in K = σ−2 Rλθ0 , we have

Rλθ0 = R−1
λθ0

[
In − F

(
F⊤R−1

λθ0
F

)−1 F⊤R−1
λθ0

]
. (.32)

By using Lemma 4, Appendix B3 in (Berger et al. [43], 2001) and under

assumption that e ∈ Im F (hypothesis H1), we have

Rλθ0 = D−1
λ

[
In − F

(
F⊤D−1

λ F
)−1 F⊤D−1

λ

]
. (.33)

Then we get

Rλθ0 = g−1
λ

[
D−1

0

(
In − F

(
F⊤D−1

0 F
)−1 F⊤D−1

0

)
+ o(1)

]
. (.34)
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Finally

Rλθ0
λ→+∞∼ g−1

λ A, (.35)

where

A = D−1
0

(
In − F

(
F⊤D−1

0 F
)−1 F⊤D−1

0

)
. (.36)

Hypothesis H5 : Let A be the matrix defined in (.36). We assume that y

does not belong to a family of vectors such that (Ay)i = 0 for all i ∈ {1, . . . , n}705

and that Card {i ∈ {1, . . . , n}, (Ay)i ≤ 0} ≠ na.

By applying Lemmas 1 and 2 on D0, we show that (A)ii ≠ 0 and we can

write for all i in {1, ..., n}(
Rλθ0y

)
i√(

Rλθ0

)
ii

λ→+∞∼ g
−1/2
λ

(Ay)i√
(A)ii

. (.37)

Analogously to the proof of Proposition 3, if we assume that lim
λ→+∞

σ2
opt(λ) ̸=

+∞ and by taking a sub-sequence
(
σ2

opt(λψ(m))
)
m∈N converging to σ2

∞

1
σ∞

g
−1/2
λψ(m)

(Ay)i√
(A)ii

m→+∞−→

 +∞ if (Ay)i > 0

−∞ otherwise
(.38)

The limit ψ(δ)
a (σ2

opt(λψ(m)), λψ(m)θ0) when m → +∞ exists and is equal to

a = lim
m→+∞

ψ(δ)
a (σ2

opt(λψ(m)), λψ(m)θ0) = 1
n

Card {i ∈ {1, . . . , n}, (Ay)i ≤ 0} ,

(.39)

which is contradictory and completes the proof.

Case 2 : D0 is singular .

In this case, one needs to go further in the Taylor expansion of Rλθ0 . We

consider the matrix W in Lemma 3, by Lemma 6 of Ren et al. ([45], 2012)710

Rλθ0 = W
(
W⊤Rλθ0W

)−1 W⊤. (.40)

By setting Σλ = W⊤Rλθ0W, the asymptotic study of Rλθ0 is equivalent to

the asymptotic study of Σλ. In case of Matérn kernel with noninteger smoothness

ν ≥ 1, the matrix Σλ can be written as (J. Muré [46], 2020)
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Σλ = gλ
(
W⊤D1W + g∗

λW⊤D∗
1W + Rg(λ)

)
, (.41)

where

– Either gλ = cλ−2k1 with k1 a nonnegative integer, or gλ = cλ−2ν .715

– g∗
λ = c∗λ−2l with l ∈ (0,+∞) .

– Rg is a differentiable mapping from [0,+∞) to Mn such that ∥Rg (λ)∥ =

o(λ−2l).

– D1 and D∗
1 are both fixed symmetric matrices with elements ∥xi − xj∥2k

where k ∈ k1 ∪ ν for D1 and k = l for D∗
1.720

The matrix W⊤D1W + g∗
λW⊤D∗

1W is nonsingular when λ → +∞, whether

if W⊤D1W is nonsingular or if it is singular.

The case where W⊤D1W is nonsingular happens for Matérn kernels with

smoothness 1 ≤ ν < 2 [46], whereas the other case occurs for regular and

smooth Matérn kernels with ν ≥ 2. These kernels are however less robust in725

uncertainty quantification so we will give only the proof for less smooth kernels

with 1 ≤ ν < 2 in particular the Matérn 3/2 kernel.

In this case, we write Σλ in (.41) as

Σλ = gλW⊤D1W
(

In + g∗
λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
))
. (.42)

As W is full rank matrix, Σλ is non-singular and

Σ−1
λ = g−1

λ

(
In + g∗

λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
))−1 (

W⊤D1W
)−1

.

(.43)

Let Mλ = g∗
λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
)
, since ∥Mλ∥ λ→+∞−→ 0, we

can assume that ∥Mλ∥ < 1 when λ is large enough and apply the Taylor series

expansion at order 1[
In + g∗

λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
)]−1 = In − g∗

λ

(
W⊤D1W

)−1

×
(
W⊤D∗

1W + Rg(λ) + o(g∗
λ)

)
.

(.44)
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Then, we plug this quantity into the equation (.43)

Σ−1
λ = g−1

λ

(
In − g∗

λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
)) (

W⊤D1W
)−1

= g−1
λ

[(
W⊤D1W

)−1 − g∗
λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
) (

W⊤D1W
)−1]

.

(.45)

Finally, we can write the matrix Rλθ0 as

Rλθ0 = g−1
λ W

[(
W⊤D1W

)−1 − g∗
λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
) (

W⊤D1W
)−1]

W⊤.

(.46)

We can also simply the previous expression into

Rλθ0 = g−1
λ (A − Bλ) , (.47)

where

A = W
(
W⊤D1W

)−1 W⊤ a fixed matrix. (.48)

Bλ = g∗
λ W

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
) (

W⊤D1W
)−1 W⊤ such that Bλ

λ→+∞= o(1).

(.49)

Or, equivalently, Rλθ0
λ→+∞∼ g−1

λ A.

Lemma 7. Let A be the matrix defined in (.48) , then Aii ̸= 0 for all i ∈730

{1, . . . , n}.

Proof. A is non-singular because

det A = det W
(
W⊤D1W

)−1 W⊤ = det
(
W⊤D1W

)−1 ̸= 0. (.50)

A is then a positive definite matrix

Aii = e⊤
i Aei > 0. (.51)

Hypothesis H6 : Let A be the matrix defined in (.48). We assume that y

does not belong to a family of vectors such that (Ay)i = 0 for all i ∈ {1, . . . , n}

and that Card {i ∈ {1, . . . , n}, (Ay)i ≤ 0} ≠ na.735

48



With Lemma 6 and Hypothesis H6, the proof of the divergence of σ2
opt(λ)

when λ → +∞ is similar to the previous case when D0 is nonsingular.

Remark 4. The hypotheses H5 and H6 are not restrictive, one can verify

numerically, that each component of Ay is not null where A is one of the

matrices defined in (.36) or (.48).740
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