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Abstract

Predicting future’s well production is a significant challenge. The ability to anticipate a well’s perfor-
mance helps operating companies plan long-term investments and optimize production strategies. Classical
models of Machine Learning have been tested to analyze well production (e.g. Random Forest and Gradi-
ent Boosting). Although the results are promising, uncertainty was not accurately quantified, and influent
variables were incorrectly identified.

Our main tool to understand the influence of inputs is the global sensitivity analysis, combining both
variance-based measures : Sobol indices [I. Sobol, 1993] and Shapley values [Shapley, 1953], and depen-
dence measures with Hilbert-Schmidt Independence Criterion [A. Gretton, 2005].

The Gaussian Processes (GP) are one of the most important Bayesian Machine Learning methods
providing a probabilistic approach for supervised learning in kernel space functions Reproducing Kernel
Hilbert Spaces (RKHS) [C.E. Rasmussen and C.K.I. Williams, 2006]. It has the advantage of interpolating,
being interpretable in terms of predictions/uncertainty and estimating sensitivity indices faithfully.

However, the GP model building process remains challenging in the case of high-dimensional data.
We deal with this problem by following a new methodology, proposed by B. Iooss and A. Marrel [2017],
allowing to build a GP model with numerous inputs in an efficient manner by screening and performing
joint modelling.

In this study, we apply the Gaussian Process (GP) model on unconventional fields with the goal of
having the best predictions on "Production over 12 months" with accurate uncertainty. The GP hyper-
parameters were optimized to get approximately the same accuracy Q2 as others Machine Learning (ML)
models. It was also optimized so that Prediction Intervals achieve appropriate confidence levels, unlike
Random Forest (overestimated) or Gradient Boosting (underestimated).

Keywords : • Uncertainty Quantification • Gaussian Processes • Sensitivity analysis • Machine Learning
• Variables selection.



Résumé

La prévision de la production future de pétrole et de gaz des puits est un défi majeur. La capacité
d’anticiper la performance d’un puits permet les compagnies pétroliéres à planifier leurs investissements
à long terme et à optimiser leurs stratégies de production. Des modèles d’apprentissage machine ont été
testés pour analyser la production (p. ex. Random Forest et GradientBoosting). Bien que les résultats
soient prometteurs, les quantiles n’ont pas été quantifiée avec précision et les variables influentes ont été
mal identifiées.

L’analyse de sensibilité globale constitue notre outil principal pour mesurer l’influence des variables
d’entrée. elle combine les mesures basées sur la variance : Les indices de Sobol [I. Sobol, 1993] et les valeurs
de Shapley [Shapley, 1953], en plus des mesures de dépendance, notamment le critère d’indépendance de
Hilbert-Schmidt HSIC [A. Gretton, 2005].

Les Processus Gaussiens GP représentent l’une des méthodes Bayesiennes d’apprentissage plus impor-
tantes. ils se fondent sur une approche probabiliste pour l’apprentissage contrôlé dans l’espace des noyaux
RKHS [C.E. Rasmussen et C.K.I. Williams, 2006]. Ils ont l’avantage d’interpoler, d’être interprétabled en
termes de prédictions/incertitudes et d’estimer fidèlement les indices de sensibilité.

Toutefois, le modèle du krigeage par PG devient très couteux lorsqu’il s’agit des données de grande di-
mension. Pour contourner ce problème, nous suivons une méthodologie proposée par B. Iooss et A. Marrel
[2017], consistant à construire un modèle GP avec de nombreuses variables entrées efficacement en criblant
ces entrées et en effectuant une modélisation conjointe.

Dans cette étude, nous appliquons le modèle de krigeage par Processus Gaussians GP dans des champs
non-conventionnels.Le but étant de prédire la production petrolière aprés 12 mois avec une incertitude
précise. Les paramètres du modèle ont été optimisés de telle sorte à avoir approximativement la même
précision Q2 que les autres modèles d’apprentissage machine. Ces paramètres été optimisés également
pour que les intervalles de prédiction atteignent des niveaux de confiance appropriés, contrairement à
ForestRandom Forest (sur-estimés) ou Gradient Boosting (sous-estimés).

Mots clés : • Quantification des incertitudes • Processus Gaussiens • Analyse de sensibilité • Apprentis-
sage Machine • Sélection de variables.
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Chapter 1

Introduction

1.1 General context

A fundamental challenge of oil and gas companies is to predict how much oil and gas they will
produce in the future. It drives both their exploration and development strategy. It is also used
as a critical metric (reserves) by investors to assess the company’s value. Yet, forecasting a well’s
future production is challenging because subsurface reservoirs properties are never fully known.
Consequently, a crucial task of reserve oil engineers is to estimate wells production with their
associated uncertainty correctly. Modelling production profile is traditionally done by exponential
Decline Curve Analysis [2] to fit a decline curve and estimate future oil production. Still, this
standard approach does not take into account the specificities of each well.

TOTAL seeks to improve the evaluation and develop more precise and realistic models. To this
end, TOTAL is investigating the use of a data-driven approach to forecasting a well’s production.
Several classical models of Machine Learning ML algorithms have been tested to analyze a well’s
production (e.g. Random Forest, Gradient Boosting). Though promising in terms of accuracy, the
results did not give entire satisfaction. Uncertainty was not correctly quantified, and in particular,
the extreme forecasts were poorly estimated when compared to field data. In addition, influent
variables were incorrectly identified. One of the reasons might be that these models capture only
correlations but not causes-effect links.

Developing ML methods that honour uncertainty is critical for Total. Indeed, reservoirs are
heterogeneous and uncertain; all reserve estimates involve uncertainty which stems mainly from
the lack of geological data and engineering data when the field is not explored and developed yet.
Thus, uncertainty quantification is one of the most critical tasks. It allows companies to keep
track of how much oil and gas is still left in their prospects and update their investors about their
predictions of future gains/losses in both optimistic and pessimistic cases.

It is common in the gas and oil industry to describe the relative degree of uncertainty in
terms of a low (P90)/high (P10) range. This is consistent with both the Petroleum Resource
Management System (PRMS) and the Securities and Exchange Commission (SEC).
Both define the reserves and resources estimates in terms of P90/P50/P10 ranges :

The range of uncertainty of the recoverable and/or potentially recoverable volumes may be rep-
resented by either deterministic scenarios or by a probability distribution. When the range of
uncertainty is represented by a probability distribution, a low, best, and high estimate shall be
provided such that:

• There should be at least a 90 percent probability (P90) that the quantities actually recovered
will equal or exceed the low estimate –proved, the highest figure–

• There should be at least a 50 percent probability (P50) that the quantities actually recovered
will equal or exceed the best estimate –median–
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• There should be at least a 10 percent probability (P10) that the quantities actually recovered
will equal or exceed the high estimate –possible, the lowest figure–

Figure 1.1 – Illustration of P90/P50/P10 ranges for production decline curve

These agencies (PRMS and SEC) define rules for defining P90/P50/P10 reserves estimates to
be disclosed to security investors for publicly traded oil and gas companies. The primary objec-
tive is to provide investors with consistent information and associated value assessments obtained
under the same assumptions to easily compare the financial performance of petroleum companies.
That also allows companies to manage their oil and gas portfolios (for those listed on U.S. stock
exchanges, they must also estimate proved reserves under SEC guidelines).

It is essential to know that reserves are the main assets of gas and oil companies. They are
anticipated to be commercially recoverable from known accumulations after a given date. Their
volumes and their associated monetary values are extremely important to the upstream petroleum
industry. Better reserves estimates support better decisions in transactions, reservoir management,
and asset portfolio management. Conversely, poor estimates can have very dangerous consequences
on investors’ confidence and may cause a dramatic drop in the stock market.

A good predictive model must be accurate and respect as much as possible the quantiles
P10/P90. Still, targeting specific quantiles such as P10, P50 and P90 realizations is a related chal-
lenge. The situation is more complex for a production forecast when the forecast is a timeline and
not a scalar. There are many statistical methods to establish P10 and P90 quantiles, such as the
Monte Carlo method or Bagging/Boostrap. However, they remain unpractical for some Machine
Learning models (e.g. Gradient Boosting and Neural Networks), which require heavy computing
resources for each simulation.

1.2 Objective and approaches

Production modelling depends on a large number of parameters and variables, including exploita-
tion conditions and reservoir geological properties. The objective is to get an accurate predictive
model of the oil/gas cumulative production at some given dates, or the max oil/gas rate, from the
input variables describing the environment and well’s characteristics. It must also quantify the
uncertainty correctly and respect the constraint of P10/P90.

We propose to tackle the problem through the following approach :

First, we apply a sensitivity analysis to extract the influent input variables. In addition to
variance-based measures, we explore a new class of sensitivity indices based on dependence mea-
sures, such as distance correlation and the Hilbert-Schmidt Independence Criterion. These two
methods represent an alternative to screening in high dimension than Pearson’s and Spearman’s
coefficients, which makes sorting the inputs more efficient.
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Second, it seems that GP should be tractable in our setting. For this, we consider a new
methodology proposed that makes it possible to build a Gaussian process model with a large
number of inputs in a very efficient manner: It uses the screening results to sort the inputs so that
the sorted inputs are successively included in the group of explanatory inputs for the Gaussian
process model. In contrast, the other inputs are considered as global stochastic (i.e. unknown)
inputs.

Finally, we optimize GP hyper-parameters by two different methods : Maximum Likelihood Es-
timator (MLE) and Cross Validation (CV). We get approximately the same accuracy R-squared as
Random Forest or Gradient Boosting. We optimize also GP hyper-parameters by Cross-Validation
to fit confidence level and respect consequently the definition of P10/P90.
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Chapter 2

Global Sensitivity Analysis measures

Contents
2.1 Importance measures (sampling-based global methods) . . . . . . . 5
2.2 Variance-based methods for sensitivity analysis . . . . . . . . . . . . 6

2.2.1 Sobol indices for independent variables . . . . . . . . . . . . . . . . . . . 6
2.2.2 Shapley values for dependent variables . . . . . . . . . . . . . . . . . . . 10

2.3 Dependence measures for sensitivity analysis . . . . . . . . . . . . . . 14
2.3.1 Distance correlation measure . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 The Hilbert-Schmidt Independence Criterion . . . . . . . . . . . . . . . 17

2.4 Sensitivity measures : limits and discussion . . . . . . . . . . . . . . 21

In many engineering and research fields, using mathematical models or approximating physical
models by surrogate models is crucial to describe phenomena (B. Sudret [3]). Nevertheless, the
input values are often known only to some degree of uncertainty and are therefore described as
random variables. The goal is then to understand the influence of inputs :

• Identify and prioritize the most influential inputs,

• Identify non-influential inputs in order to fix them to nominal values,

• calibrate some model inputs using some available information (real output observations,
constraints, etc.).

Sensitivity Analysis (SA) methods are invaluable tools. They allow studying how the uncer-
tainty in the output of a model can be apportioned to different sources of uncertainty in the model
input (A. Saltelli et al. [4]). It may be used to determine the most contributing input variables
to an output behaviour or to understand/interpret the dependencies and interaction structure of
the model. Sensitivity Analysis can be helpful in many situations; one can mention model under-
standing by reducing the variance of the most influential inputs or simplifying by decreasing the
number of variables in the model.

An easy and very intuitive way to examine the influence of input parameters is local sensitivity
analysis, considered to be the first historical approach to sensitivity analysis SA. It consists of
studying the impact of small input perturbations on the model output by calculating or estimating
the partial derivatives of the model at specific points of interest. Unlike local sensitivity analysis,
global sensitivity analysis (GSA) provides information about the influence due to variation over
the whole system and offers a comprehensive approach to the model analysis.
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The global sensitivity indices were suggested by (I. Sobol [5] [6]) in the early 1990s with variance-
based methods, and then further developed by (A. Saltelli and T. Homma [7]). They have been
considered as one of the most efficient and popular global SA techniques for a while. There’s also
Derivative based Global Sensitivity Measures (I. Sobol and S. Kucherenko, [8], I. M. Sobol and S.
Kucherenko [9]) which have shown more efficiency and accuracy in the sensitivity analysis (B. Iooss
and P. Lemaître [10]). Recently, a new class of sensitivity indices based on dependence measures
is proposed (A. Gretton et al. [11], S. Da Veiga [12]) which overcomes some disadvantages of other
sensitivity classes, especially in high dimension.

2.1 Importance measures (sampling-based global methods)

A naive way to answer the previous questions is the importance measures by fitting a model on
the output Y given inputs X = (X1, · · · , Xp), provided that the sample size n is sufficiently large,
and studying this fitted model. For linear models, the main indices are:

– Pearson Correlation Coefficient :

ρ(Xk, Y ) =

∑n
i=1

(
X

(i)
k −Xk

) (
Y (i) − Y

)√∑n
i=1

(
X

(i)
k −Xk

)2
√∑n

i=1

(
Y (i) − Y

)2 (2.1)

where Xk = 1
n

∑n
i=1X

(i)
k and Y = 1

n

∑n
i=1 Y

(i) are the empirical mean of Xk and Y .

Partial Correlation Coefficient (PCC) provides a linearity measure between variable Xk and
output Y . If Xk and Y are independents, ρ(Xk, Y ) equals 0 but the reverse is not true.

– Standard Regression Coefficient (SRC) :

SRCk = βk

√
Var(Xk)

Var(Y )
(2.2)

where βk is the linear regression coefficient associated to Xk . It represents a share of variance
if the linearity hypothesis is confirmed.

– PCC :
PCCk = ρ(Xk − X̂−k, Y − Ŷk) (2.3)

where X̂−k is the prediction of the linear model on Xk with respect to the other inputs
X−k and Ŷk is the prediction of the linear model where Xk is missing. PCCk measures the
sensitivity of Y to Xk when the effects of the other inputs have been removed.

These linear and rank-based measures are part of the so-called sampling based global sensitiv-
ity analysis method. If the model is not linear but still monotonic, a rank transformation can be
applied to the three measures by replacing the values by their ranks in each column of the matrix.
Giving analogously, the Spearman’s Correlation Coefficient ρS , the Standard Rank Regression Co-
efficient (SRRC), the Partial Rank Correlation Coefficient (PRCC) and Kendall rank correlation
coefficient τ .

However, in practice the models are frequently non-linear and non-monotonic, the importance
measures could fail to describe the influence of inputs.
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2.2 Variance-based methods for sensitivity analysis

2.2.1 Sobol indices for independent variables

Consider the following model:
Y = f(X1, .., Xp) (2.4)

where the output Y is a scalar, f is a measurable function describing the model and the input
factors X1, .., Xp are supposed at this part to be independent random variables described by known
probability distributions.

An intuitive way to define the importance of input Xi is to analyze how the model output Y
changes for different values of Xi. The idea is to compare the variance Var(Y ) with the variance
of Y knowing Xi (i.e the variance of the conditional expectation Y on Xi), these are the Sobol’s
indices.

The original idea behind the Sobol’s indices is to represent the model as a sum of compo-
nent functions with increasing dimensionality, and then decompose the output variance into the
contribution associated with each input factor.

Definition 2.2.1 (Hoeffding decomposition of variance [13]) Let us assume that the func-
tion f in (2.4) is L2−integrable function over the unit hypercube [0, 1]p. It is possible to represent
this function as a sum of elementary functions:

f(X) = f0 +

p∑
i=1

fi (Xi) +

p∑
i<j

fij (Xi, Xj) + · · ·+ f12...p(X) (2.5)

This decomposition is unique under some conditions (Sobol [83]):

∫ 1

0

fi1...is (xi1 , . . . , xis) dxik = 0, 1 ≤ k ≤ s, {i1, . . . , is} ⊆ {1, . . . , p} (2.6)

In the Sensitivity Analysis framework, let us have the random vector X = (X1, ..., Xp) where
the variables are mutually independent, and the output Y = f(X) of a deterministic model f(·).
It can be shown that the variance of the output, Var(Y ), can also be decomposed according to this
functional decomposition, often referred to as functional ANOVA (B. Efron and C. Stein [14]):

Var(Y ) =

p∑
i=1

Vi(Y ) +
∑

1≤i<j≤p

Vij(Y ) + · · ·+ V1,...,p(Y ) (2.7)

where Vi(Y ), Vij(Y ), ..., V1,2,...,p(Y ) denote the variance of fi(Y ), fij(Y ), ..., f1,...,p(Y ) respec-
tively :

Vi(Y ) = Var [E (Y |Xi)]

Vij(Y ) = Var [E (Y |Xi, Xj)]− Vi(Y )− Vj(Y )

Vijk(Y ) = Var [E (Y |Xi, Xj , Xk)]− Vij(Y )− Vik(Y )− Vjk(Y )− Vi(Y )− Vj(Y )− Vk(Y )

.

.

.

V1,...,p(Y ) = Var(Y )−
p∑
i=1

Vi(Y )−
∑

1≤i<j≤p

Vij(Y )−
∑

1≤i1<...<≤ip−1≤p

Vi1ip−1
(Y )

(2.8)
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From this decomposition (2.7), The so-called “Sobol’ indices” or “Variance-based sensitivity
indices” (I. Sobol [5]) can be naturally obtained by dividing on Var(Y ). These indices express the
share of the variance of Y that is due to a given input or input combination.

Note that the first-order indexes Si can be deduced from the first p terms of the decomposition
(2.7) :

Definition 2.2.2 (Sobol first-order index) The first-order sobol index of an input Xi is defined
as the first term of the Hoeffding decomposition.

Si =
Vi(Y )

Var(Y )
=

Var [E (Y |Xi)]

Var(Y )
(2.9)

It measures how the expected value of Y varies for different values of Xi compared to the total
variation of Y . The larger this quantity, the more important the contribution of Xi to the variance
of Y .

The conditional expectation Y on Xi can be computed as the average of the model evaluations
f(.) from a sample of X∼i = (X1, ..., Xi−1, Xi+1, .., Xp) and a given Xi = x.

E (Y |Xi) = g(Xi) (2.10)

where g(x) = E (Y |Xi = x) for x ∈ I

The second-order sensitivity index, Sij , expresses the amount of variance of Y explained by the
interaction of the factors Xi and Xj subtracting order indices:

Sij =
Vij(Y )

Var(Y )
=

Var [E (Y |Xi, Xj)]− Si − Sj
Var(Y )

(2.11)

Consequently, for a subset u of k-indices it is possible to define the k-th order index:

Su =
Var [E (Y |Xu)]

Var(Y )
−
∑
w⊆u

Sw (2.12)

and so on until order p

A. Saltelli and T. Homma [7] define in particular the total sobol index of an input Xi is defined
as :

STi = Si +
∑
i<j

Sij +
∑

j 6=i,k 6=i,j<k

Sijk + . . . =
∑
u∈#i

Su (2.13)

To estimate Sobol’ indices, many techniques have been developed including Fast Amplitude
Sensitivity Test (FAST) due to H. Cukier et al. [15] and [16], and Monte Carlo sampling-based
methods : I. Sobol [6] for first order and interaction indices and A. Saltelli [17] for first order and
total indices.

However, FAST remains costly, unstable and biased when the number of inputs increases (larger
than 10) (Tissot, J-Y. and Prieur, C. [18]). Unlike a Monte Carlo method which still feasible with
high inputs data and provides less when performed with random repetition (B. Iooss et al. [19])

We recall the strong law of large numbers commonly used in Monte-Carlo method :

Theorem 1 (Strong Law of Large numbers) Let X be a real-valued random variable. Let
X1,...,Xn be a sequence of i.i.d variables with the same law as X, and assume that E(X) = µ
exists and is finite.

Then Xn =
1

n

n∑
i=1

Xi
a.s.→ µ = E(X) when n→∞ (2.14)
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This law makes it possible to estimate the expectation of any function of a random variable X
by the estimator :

Ê[f(X)] =
1

n

n∑
i=1

f (xi) (2.15)

where (xi)i=1..n is a n-sample realizations of the random variable X.

The rate of convergence of Monte Carlo method is in O(
√
n). Many alternative methods have

been proposed to improve convergence’s rate, in particular Quasi-Monte Carlo, with a rate of
O(n−

3
2 (log(n))

p−1
2 ) (A. Owen [20]).

Estimating Sobol’s indices requires the estimation of the variance of the conditional expectation.
An estimating technique called Pick and Freeze 2 due to I. Sobol [6] is useful in this case.

Lemma 2 (Pick and Freeze, I. Sobol [5]) Let J ⊆ {1, .., p} and X = (X1, .., Xp) = (XJ , XJ )
be a random vector of independent variables and let Y = f(XJ , XJ ), then :

Var [E (Y |XJ )] = Cov(Y, Y J ) (2.16)

where Y J = f(XJ , (XJ )′) and (XJ )′ is an independent copy of XJ (i.e random vector inde-
pendent of XJ with the same distribution).

The first-order sensitivity indices (See Eq.2.9) can be expressed then as :

Si =
Cov(Y, Y (i))

Var(Y )
=

E(Y Y (i))− E(Y )E(Y (i))

Var(Y )
=

E(Y Y (i))− E(Y )2

Var(Y )
(2.17)

By considering an n-sample X̂n = (xk1, ..., xkp)k=1..n of realizations of input variables (X1, ..., Xp)

and Ŷn = (Yk)k=1..n = f (xk1, ..., xkp)k=1..n, a natural estimator of Si consists in taking the em-
pirical estimators of the mean E(Y ) = µ and of the variance Var(Y ) = V :

Ŝi =
1
n

∑n
k=1 YkY

(i)
k −

(
1
n

∑n
k=1 Yk

)2
1
n

∑n
k=1 Y

2
k −

(
1
n

∑n
k=1 Yk

)2 (2.18)

where

µ̂ = 1
n

∑n
k=1 Yk = 1

n

∑n
k=1 f(xk1, ..., xkp)

V̂ = 1
n

∑n
k=1 Y

2
k − (

∑n
k=1 Yk)

2
= 1

n

∑n
k=1 f

2(xk1, ..., xkp)− µ̂2

Estimating the term Ui =
∑n
k=1 YkY

(i)
k can be done by using two samples of realizations of the

input variables X̂(1)
n,i and X̂

(2)
n,i :

X̂
(1)
n,i = (X

(1)
k,i , X

(1)
k,∼i)k=1..n = (x

(1)
k1 , . . . , x

(1)
k(i−1), x

(1)
ki , x

(1)
k(i+1), . . . , x

(1)
kp )k=1..n

X̂
(2)
n,i = (X

(1)
k,i , X

(2)
k,∼i)k=1..n = (x

(2)
k1 , . . . , x

(2)
k(i−1), x

(1)
ki , x

(2)
k(i+1) · · · , x

(2)
kp )k=1..n

such that :

Ûi =
1

n

n∑
k=1

YkY
(i)
k =

1

n

n∑
k=1

f
(
x

(1)
k1 , . . . , x

(1)
k(i−1), x

(1)
ki , x

(1)
k(i+1), . . . , x

(1)
kp

)
f
(
x

(2)
k1 , . . . , x

(2)
k(i−1), x

(1)
ki , x

(2)
k(i+1) · · · , x

(2)
kp

) (2.19)
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Hence, The first-order sensitivity indices are obtained from Ûi, µ̂
2 and V̂ by computing :

Ŝi =
Ûi − µ̂2

V̂
(2.20)

The number of indices growths in an exponential way with the number p of dimension: there
are 2p − 1 indices. For computational time and interpretation reasons, the practitioner should not
estimate indices of order higher than two and interest himself in the total effect.

Indeed, using the law of total variance below :

Theorem 3 (Law of total Variance, N. A. Weiss [21]) If X and Y are two random variables
defined on the same probability space (Ω,F ,P), and the variance of Y is finite.

Then Var(Y ) = Var [E (Y |X)] + E [Var (Y |X)] (2.21)

When applying theorem 3 to X∼i and normalizing by output variance Var(Y ), we find the sum
of two shares:

1 =
Var [E (Y |X∼i)]

Var(Y )
+

E [Var (Y |X∼i)]
Var(Y )

(2.22)

Since the first term is the first order index of X∼i (see Eq. (2.9)) measuring the contribution
of all terms expect those where Xi appeared, the second term has to include all combined effects
of the variables Xi. It is thus the total index STi of Xi.

Definition 2.2.3 (Sobol total effect) The total-order sensitivity index STi accounting all the
contributions to the output variation due to factor Xi, is defined as :

STi =
E [Var (Y |X∼i)]

Var(Y )
= 1− Var [E (Y |X∼i)]

Var(Y )
(2.23)

such that
S∼i + STi = 1 (2.24)

STi represents the expected variance of Y , when only Xi is varied. If it is small, it means that
Xi can be fixed to a nominal value without impacting the output.

The total order indices (2.23) can be estimated analogously using Pick and Freeze rule 2 :

STi = 1− Var [E (Y |X∼i)]
Var(Y )

= 1− Cov(Y, Y (∼i))

Var(Y )
= 1− E(Y Y (∼i))− E(Y )2

Var(Y )
(2.25)

Using the same estimator of Sobol first-order as 2.18 except that this time it is applied to X∼i,
we get :

ŜTi = 1−
1
n

∑n
k=1 YkY

(∼i)
k −

(
1
n

∑n
k=1 Yk

)2
1
n

∑n
k=1 Y

2
k −

(
1
n

∑n
k=1 Yk

)2 (2.26)

Using also two samples of realizations of the input variables X̂(1)
n,∼i and X̂

(2)
n,∼i :

X̂
(1)
n,∼i = (X

(1)
k,i , X

(1)
k,∼i) = (x

(1)
k1 , . . . , x

(1)
k(i−1), x

(1)
ki , x

(1)
k(i+1), . . . , x

(1)
kp )k=1..n

X̂
(2)
n,∼i = (X

(2)
k,i , X

(1)
k,∼i) = (x

(1)
k1 , . . . , x

(1)
k(i−1), x

(2)
ki , x

(1)
k(i+1) · · · , x

(1)
kp )k=1..n
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such that :

n∑
k=1

YkY
(∼i)
k =

1

n

n∑
k=1

f
(
x

(1)
k1 , . . . , x

(1)
k(i−1), x

(1)
ki , x

(1)
k(i+1), . . . , x

(1)
kp

)
f
(
x

(1)
k1 , . . . , x

(1)
k(i−1), x

(2)
ki , x

(1)
k(i+1) · · · , x

(1)
kp

) (2.27)

We finally get :

ŜTi = 1− Û∼i − µ̂2

V̂
(2.28)

Note that these indices correspond to the definition of Sobol first-order and total indices as
defined from Hoeffding decomposition. Note also STi − Si measures how much Xi is involved in
interactions and that :

0 ≤ Si ≤ STi ≤ 1. (2.29)

2.2.2 Shapley values for dependent variables

The previous Sobol’s indices - first-order and total effect - are often used together in the sensitivity
analysis. Yet, they are founded on a gross assumption of independence of variables. They may fail
to appropriately measure how sensitive the output is to uncertainty in the inputs when there is
probabilistic dependence or correlation among the inputs (i.e. inputs are inter-correlated) and will
consequently present a faulty model interpretation. The purpose now is to determine the output
variance when there are some dependencies between model inputs or when they interact.

A very similar problem has been studied in the economics and game theory literature for a long
time. The motivation is to find a fair way to attribute the value created in a team effort to the
individual members of that team. Economists have studied the setting to measure the value that
any subset of the team would have created. For that, they use an attribution method known as
the Shapley value (L. Shapley [22]).

Definition and properties :

The Shapley value (L. Shapley [22]) is introduced in game theory to evaluate the “fair share" of
the total gains to the players in a cooperative game. Mathematically, in Song et al. [23], a k-player
game with the set of players K = {1, 2, ..., k} is defined as a real-valued function that maps a subset
of K to its corresponding value (or cost), i.e., v : 2K → R with v(∅) = 0 . Hence, v(J ) describes
the cost that arises the members of subset/coalition J of K by cooperation in the game.

Definition 2.2.4 (Shapley value, L. Shapley [22]) The Shapley value of player i with respect
to v(.) is defined as :

Shi =
∑

J⊆K\{i}

(k − |J | − 1)!|J |!
k!

(v(J ∪ {i})− v(J )) (2.30)

where |J | indicates the size of J .

Formally, Shapley value Shi is the incremental cost of including player i in set J averaged over
all sets J ⊆ K\{i}. Concretely, it represents the average contribution of the player i when he
decides to play the game and join a coalition J over all coalitions formed without player i.

The Shapley value (See Eq.2.30) has several appealing properties characterizing its uniqueness
(Winter, [24]) :
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1. Efficiency :
∑k
i=1 Shi = v(|K|)

2. Symmetry : If v(J + i) = v(J + j) for all J ⊆ K\{i, j} then v(i) = v(j)

3. Dummy : If v(J + i) = v(J ) for all J ⊆ K then Shi = 0

4. Additivity : If v and ṽ have Shapley values Sh and S̃h respectively then the game with value
function v(J ) + ṽ(J ) has Shapley value of Shi + S̃hi for all i ∈ K

Therefore, A. B. Owen [25] proposed an alternative sensitivity measure for dependent variables,
based on the concept of the Shapley value in game theory and show that these values are interesting
as they allocate the mutual contribution (due to correlation and interaction) of a group of inputs
to each individual input within the group.

In the framework of global sensitivity analysis, the set of players K is the index set of inputs
{X1, .., Xk}, and the value function v(.) for set of inputs (i.e coalition) J ⊆ K is defined as its
explanatory power of output variance:

v(J ) = Var [E (Y |XJ )] (2.31)

v(J ) measures the variance of Y caused by the uncertainty of the inputs in J . Obviously, we
have :

v(∅) = Var [E (Y |X∅)] = Var [E (Y )] = 0 (2.32)
v(K) = Var [E (Y |XK)] = Var [E (Y |F)] = Var(Y ) (2.33)

E. Song et al. [23] proposed another value function ṽ such as :

ṽ(J ) = E [Var (Y |X−J )] (2.34)

They also proved that Shapley values using both values functions v and ṽ are equivalent. B.
Iooss and Cl. Prieur [26] use the normalized version of these two functions to estimate Shapley
effects.

The incremental cost v(J ∪ i)− v(J ) then can be interpreted as the expected decrease in the
variance of Y if we are given the input value of Xi out of all the unknown inputs in J ∪ {i}.

Finally, we define Shapley values for global sensitivity analysis as in 2.30 :

Definition 2.2.5 (Shapley value for sensitivity analysis) Let X = {X1, · · · , Xk} be a set of
inputs and K = {1, · · · , k}, the Shapley value of an input Xi.

Shi =
∑

J⊆K\{i}

(k − |J | − 1)!|J |!
k!

(v(J ∪ {i})− v(J )) (2.35)

where v(J ) = Var [E (Y |XJ )] and |J | indicates the size of J

Comparison between Sobol’ indices and Shapley values :

The first-order Sobol index Si and the total index STi multiplied by Var(Y ), can be defined as
semi-values using the value function in 2.31 or in 2.34 :

Si = Var [E (Y |Xi)] = v({i})− v(∅)
= Var(Y )− E

[
Var

(
Y |X−K\{i}

)]
= ṽ(K)− ṽ(K\{i})

(2.36)

ST i
= E [Var (Y |Xi)] = ṽ({i})− ṽ(∅)
= Var(Y )−Var

[
E
(
Y |X−K\{i}

)]
= v(K)− v(K\{i})

(2.37)
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Hence, the first-order and total Sobol effects are captured by shapley value when evaluating
the incremental cost for subsets K\{i} and ∅.

Under the assumptions of the four axioms in 2.2.2, and thanks to the propriety of efficiency
2.38, the Shapley value has an outstanding interest compared to Sobol first-order and total effect,
it is the unique value such that the sum of all contributions for each input is equal to the total
variance of the output.

k∑
i=1

Shi = v(|K|) = Var(Y ) (2.38)

A. B. Owen [25] proved the inequality between Sobol’s indices and Shapley value “sandwich
effect” in the case of independent input variables :

Si ≤ Shi ≤ STi ∀i ∈ {1, 2, ...k} (2.39)

with equality if and only if the model is perfectly additive.

This inequality 2.39 doesn’t hold anymore when inputs are correlated as shown by B. Iooss [26]
for some joint distributions. However, Shapley value remains always between Sobol’s indices :

Si ≤ Shi ≤ STi or STi ≤ Shi ≤ Si ∀i ∈ {1, 2, ..., k} (2.40)

In their paper, B. Iooss [26] also showed some interesting results about Sobol’s and Shapley
values :

• If STi = 0, then the model output can be written as a measurable function of X∼i only.

Proof : If STi = 0, then E(Var(Y |X∼i)) = 0 so Var(Y |X∼i)) = E([Y − E(Y |X∼i)]2|X∼i) =
0 almost surely. Consequently, by taking expectation E([Y − E(Y |X∼i)]2) = 0 so Y −
E(Y |X∼i) = 0 almost surely. Hence, Y = E(Y |X∼i) which is a measurable function of
X∼i = (X1, ...Xi−1, Xi+1, ...Xn).

• Assume STi = 0, if Si > 0, then Xi is correlated to X∼i = (X1, ..., Xi−1, Xi+1, ..., Xd).

Proof : if X = (X1, ..., Xd) are independent then Si = Var[E(Y |Xi)] = Var[E(f(X∼i)|Xi)]
By independence, Si = Var[E(f(X1, ...Xi−1, Xi+1, ...Xn))] = Var[E(f(X∼i)] = 0

• If Shi = 0 then the input has no significant contribution to the variance of the output, neither
by its interactions nor by its dependencies with other inputs.

Proof : This is direct consequence of the equitable principle on which the allocation rule of
Shapley value is based on.

Estimating Shapley values :

Computing Shapley effects could be expensive and unfeasible if the number of inputs is large.
Indeed, they involve all subsets J of the inputs to evaluate v(K) for all J ⊆ K, i.e., computing
2k − 1 variance components and k!.

Two algorithms have been proposed by J. Castro et al. [27] to estimate Shapley values given a
cost function v(.) : "Exact permutation” and "Random permutation".

The “Exact permutation” algorithm traverses all possible permutations between the inputs in
Π(K) and estimate Shi in 2.30 by :

ˆShi =
∑

π∈Π(K)

1

k!
(v(π ∪ {i})− v(π)) (2.41)
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while “Random permutation” algorithm consists of sampling some permutations of the inputs
randomly π1, · · · , πm in Π(K) and estimating Shi via Monte-Carlo simulation :

ˆShi =
1

m

m∑
k=1

(v(Pi(πk) ∪ {i})− v(Pi(πk)) (2.42)

where Pi(π) is the set the players that precede player i in π.

E. Song et al. [23] proposed an improvement to this algorithm that makes accurate approxi-
mation of Shapley effects in a efficient manner in terms of computation budget (See Algorithm 1
in 2.1).

Figure 2.1 – Algorithm 1 for estimating Shapley values

Instead of calculating the incremental cost for each i, Algorithm 1 below 2.1 presents a sequential
procedure consisting of calculating the costs from the smallest subset of π to the largest and
subtracts the previous set’s cost prevC to obtain the marginal cost, reducing thus the computing
time of the original algorithm reduced by half.

However, the algorithm depends on various parameters: Ni (conditional variance estimation
sample size), No (expectation estimation sample size), Nv (output variance estimation sample size)
andm (random permutation number) and requires a total computing resources of Nv+mNiNo(k−
1) operations.
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As Ŝhi is unbiased estimator of Shi and Var(Ŝhi) ≤ Var(Y )2

m , a wise strategy of computational
budget is to choose Ni = 3, No = 1, and m as large as possible (E. Song et al. [23]), until a
sufficient precision (B. Iooss [26]). In addition, adding dummy inputs will increase the complexity
of the algorithm without affecting the output Y nor the variance of the estimated Shapley effects
as it would have the same bound as before.

2.3 Dependence measures for sensitivity analysis

The importance of the independence assumption for inference arises in many research and engi-
neering fields (biomedical). The classical measures of importance, as introduced in [2.1] are mainly
sensitive to a linear or monotonic relationship. Nevertheless, the situation is more challenging in
reality, especially when Pearson’s coefficient indicates a null value for dependent variables (See
figure 2.2). Therefore, there’s a need for a statistical measure that, on the one hand, can detect
nonlinear relationships between variables. On the other hand, it generalizes the properties of the
Pearson correlation coefficient and quantifies the independence when it is zero.

Figure 2.2 – Comparison between distance correlation and other linear/monotonic coefficients (L.
Stasielowicz and R. Suck (2019) [1])

Formally, the main problem of measuring dependence is, given (X,Y ) = (x1, y1), . . . , (xn, yn)
with a joint distribution PX,Y , to determine whether PX,Y = PXPY (i.e X and Y are independent)
[28].

2.3.1 Distance correlation measure

G. J. Szekely et al. ([29] and [30]) introduced a new measure, called the distance correlation
coefficient, to address the shortcomings of the Pearson correlation coefficient. They were also
providing a new approach to the problem of testing the joint independence of random vectors.

The distance correlation coefficient has now been applied in many contexts, In particular in
Astrophysical data [31] where it exhibited higher statistical power (i.e., fewer false positives) than
the Pearson coefficient to find nonlinear associations and identified smaller sets of variables that
provide equivalent statistical information.
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Definition 2.3.1 (Characteristic function) Let p and q be positive integers. Let X = (X1, ..., Xp) ∈
Rp and Y = (Y1, ..., Yq) ∈ Rq be random vectors. Let denote φX and φY the characteristic function
of X and Y , respectively, and φX,Y their joint characteristic function :

φX(t) = E[exp(i〈t,X〉)] ∀t ∈ Rp

φY (s) = E[exp(i〈s, Y 〉)] ∀s ∈ Rq

φX,Y (t, s) = E[exp(i〈t,X〉+ i〈s, Y 〉)] ∀(t, s) ∈ Rp × Rq
(2.43)

Theorem 4 (Independence characterization) Let X and Y be two random variables. Let ΦX
and ΦY be the characteristic function of X and Y.

Then X and Y are mutually independent iif ΦX,Y (s, t) = ΦX(s)ΦY (t) (2.44)

Definition 2.3.2 (Distance covariance) The distance covariance between the random vectors
X and Y as the non-negative number V(X,Y ) defined by :

V(X,Y ) =

(
1

cpcq

∫
|φX,Y (s, t)− φX(s)φY (t)|2

‖s‖p+1‖t‖q+1
dsdt

)1/2

(2.45)

where |.| denotes the modulus of complex numbers and

cd =
π(1+d)/2

Γ((1 + d)/2)
where Γ is the complete gamma function (2.46)

cd = C(d, α = 1) verifies the lemma below :

Lemma 5 (J. Szekeley et al. [29]) If 0 < α < 2, then for all x in Rd :∫
Rd

1− cos〈t, x〉
|t|d+α
d

dt = C(d, α)|x|α (2.47)

The integral in 2.3.2 is well defined by using lemma 5, in fact :

∫
Rp+q

|φX,Y (s, t)− φX(s)φY (t)|2

‖s‖p+1‖t‖q+1
dsdt

≤
∫
Rp+q

(
1− |φX(s)|2

)(
1− |φY (t)|2

)
‖s‖p+1‖t‖q+1

dsdt

=

∫
Rp

1− |φX(s)|2

‖s‖p+1
ds

∫
Rq

1− |φY (t)|2

‖t‖q+1
dt

=

∫
Rp

1− φX(s)φX′(s)

‖s‖p+1
ds

∫
Rq

1− φY (t)φY ′(t)

‖t‖q+1
dt

=

∫
Rp

1− φX−X′(s)
‖s‖p+1

ds

∫
Rq

1− φY−Y ′(t)
‖t‖q+1

dt

=

∫
Rp

1− E [exp (i〈t,X −X ′〉)]
‖s‖p+1

ds

∫
Rq

1− E [exp (i〈t, Y − Y ′〉)]
‖t‖p+1

ds

= E
[∫

Rp

1− cos 〈t,X −X ′〉
|t|1+p
p

dt

]
· E[

[∫
Rq

1− cos 〈s, Y − Y ′〉
|s|1+q
q

ds

]
= cpcq E |X −X ′|p E |Y − Y

′|q <∞

(2.48)

The distance correlation coefficient between X and Y is defined as :

R(X,Y ) =
V(X,Y )√

V(X,X)V(Y, Y )
(2.49)

if V(X,X),V(Y, Y ) > 0; otherwise, R(X,Y ) is defined to be 0. It has the following proprieties :
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• 0 ≤ R(X,Y ) ≤ 1

• R(X,Y ) = 0 if and only if X and Y are mutually independent (direct result of theorem 4)

The second propriety give a powerful advantage of distance correlation R(X,Y ) over the Pear-
son coefficient and other classical measures of correlation

The distance covariance in 2.45 can be expanded and computed in terms of expectations of
pairwise Euclidean distances :

V2(X,Y ) = EX,X′,Y,Y ′ ‖X −X ′‖2 ‖Y − Y
′‖2

+ EX,X′ ‖X −X ′‖2 EY,Y ′ ‖Y − Y
′‖2

− 2EX,Y [EX′ ‖X −X ′‖2 EY ′ ‖Y − Y
′‖2]

(2.50)

where (X ′, Y ′) is an i.i.d copy of (X,Y ), so a natural estimator of V2(X,Y ) consists of esti-
mating each expectation E(.) by 1

n

∑n
i=1 and is given by :

V2
n(X,Y ) =

1

n2

n∑
i,j=1

‖Xi −Xj‖2 ‖Yi − Yj‖2

+
1

n2

n∑
i,j=1

‖Xi −Xj‖2
1

n2

n∑
i,j=1

‖Yi − Yj‖2

− 2

n

n∑
i=1

 1

n

n∑
j=1

‖Xi −Xj‖2
1

n

n∑
j=1

‖Yi − Yj‖2


(2.51)

The empirical distance variance is defined in a simplified form from this estimator has been
simplified by A. Feuerverger [32] and G. J. Szekely [29] :

Vn(X,Y ) =
1

n

√√√√ n∑
k,l=1

AklBkl (2.52)

where, for 1 ≤ k, l ≤ n:

akl = |Xk −Xl‖p; ak. =
1

n

n∑
j=1

akj (2.53)

a.l =
1

n

n∑
i=1

ail; a =
1

n2

n∑
i,j=1

aij (2.54)

and Akl = akl − ak. − a.l + a (2.55)

and similarly

bkl = |Yk − Yl‖q; bk. =
1

n

n∑
j=1

Bkj (2.56)

b.l =
1

n

n∑
i=1

Bil; b =
1

n2

n∑
i,j=1

Bij (2.57)

and Bkl = akl −Bk. − b.l + b (2.58)

Although Vn(X,Y ) is a consistent estimator of V(X,Y ), it is easy to see that it is biased. A
correction is proposed by G. J.Szekely and M. L. Rizzo [33] for an unbiased version of Vn(X,Y )
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The empirical distance correlation Rn(X,Y ) is then :

Rn(X,Y ) =
Vn(X,Y )√

Vn(X,X)Vn(Y, Y )
(2.59)

if Vn(X,X) and Vn(Y, Y ) > 0; otherwise, Rn(X,Y ) is defined to be 0.

Remark 1 Vn(X,X) = 0 if and only if every sample observation is identical i.e X1 = ... = Xn

Coming back to sensitivity analysis, we define a new index based on distance correlation :

SdCorXk
= R(Xk, Y ) (2.60)

SdCorXk
will measure the dependence between an input variable Xk and the output Y . It is

expected to detect nonlinear relationships and quantify effectively the impact of Xk on Y .

2.3.2 The Hilbert-Schmidt Independence Criterion

In this subsection, we describe how to measure the independence via The Hilbert-Schmidt Inde-
pendence Criterion, the following theorems and the RKHS theory represent the root idea behind
this criterion :

Theorem 6 (Independence by covariance) Let X and Y be two random variables. Let f, g :
Rn → R be two continuous bounded functions.

Then X and Y are mutually independent iif ∀f, g Cov(f(X), g(Y )) = 0 (2.61)

Proof : =⇒ ) Let X and Y be two independent random variables and let f, g be two bounded
continuous functions.
By König-Huygens theorem Cov(f(X), g(Y )) = E(f(X)g(Y ))− E(f(X))E(g(Y )) = 0 since :

E(f(X)g(Y )) =

∫
R2

f(x)g(y)fX,Y (x, y)dxdy (2.62)

=

∫
R2

f(x)g(y)fX(x)fY (y)dxdy by independence of X and Y (2.63)

=

∫
R

[∫
R
f(x)g(y)fX(x)fY (y)dx

]
dx (2.64)

=

∫
R
f(y)fX(x)

[∫
R
g(y)fY (y)dy

]
dx (2.65)

=

(∫
R
f(x)fX(x)dx

)(∫
R
g(y)fY (y)dy

)
(2.66)

= E(f(X))E(g(Y )) (2.67)

⇐=) Take f(x) = exp(i〈t, x〉) and g(y) = exp(i〈s, y〉) for all t ∈ Rp and s ∈ Rq.
f and g are continuous bounded function such that Cov(f(X), g(Y )) = 0 i.e E(f(X)g(Y )) =
φX,Y = E(f(X))E(g(Y )) = φXφY , this implies the independence of X and Y by theorem 2.43.

Theorem 7 (Cross-Covariance Operator) Let X and Y be two random variables. We denote
by Cb(R) the space of continuous and bounded functions in R.

∃! CX,Y ∈ L(Cb(R),∀(f, g) ∈ Cb(R)× Cb(R) : 〈f(X), CX,Y g(Y )〉 = Cov(f(X), g(Y )) (2.68)

where 〈., .〉 is inner product 〈X,Y 〉 = X>Y . CXY is called the cross-covariance operator

Proof : The application B : Cb(R)×Cb(R)→ R : B(f, g) = Cov(f(X), g(Y )) is a bilinear bounded
form on a Hilbert space, the corollary of Riesz’s representation theorem for bilinear forms guarantee
the existence and uniqueness of CXY
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RKHS Theory : Reproducing Kernel Hilbert Spaces

We begin by introducing Hilbert spaces and kernels which form the building block of reproducing
kernel Hilbert spaces as introduced by A. Berlinet and C. Thomas-Agnan [34].

Definition 2.3.3 (Hilbert space) A Hilbert Space is an inner product space that is complete
and separable with respect to the norm defined by the inner product (i.e Cauchy sequence limits)

Definition 2.3.4 (Kernel) Let X be a non-empty set. A function k : X × X → R is a kernel if
there exists a Hilbert space H and a feature map φ : X → H such that :

∀x, x′ ∈ X k(x, x′) := 〈φ(x), φ(x′)〉H

The feature map φ of every point x ∈ X is a function such that : φ(x) = k(·, x). In particular,
for any x, y ∈ X , k(x, y) = 〈k(x, ·), k(·, y)〉H = 〈φ(x), φ(y)〉H

It has the following proprieties :

1. k is symmetric : ∀(x, y) ∈ X × X : k(x, y) = k(y, x).

2. k is positive semi-definite : ∀x1, x2, ..., xn ∈ X , the ”Gram Matrix” K defined by Kij =
k(xi, xj) is positive semi-definite i.e ∀a ∈ Rn a>Ka ≥ 0

The following list of functions are common examples of positive semi-definite kernels on X = Rn

• Linear kernel : k(x, x′) = 〈x, x′〉

• Gaussian kernel with length-scale σ > 0 : k(x, x′) = exp
(
−‖x−x

′‖2Ln
2σ2

)
• Matérn kernel with parameters σ and ν : kν(x, x′) = 21−ν

Γ(ν)

(√
2ν ‖x−x

′‖
ρ

)ν
Kν

(√
2ν ‖x−x

′‖
ρ

)
where Γ is the complete Gamma function, Kν is the modified Bessel function of the second
kind.

• Polynomial kernel of degree d ∈ N : k(x, x′) = (〈x, x′〉+ 1)d

Theorem 8 (Sum of kernels are kernels) Given α > 0 and k, k1 and k2 all kernels on X , then
αk and k1 + k2 are kernels on X .

Theorem 9 (Product of kernels are kernels) Given k1 on X1 and k2 on X2, then k1 × k2 is
a kernel on X1 ×X2. If X1 = X2 = X then k := k1 × k2 is a kernel on X .

Definition 2.3.5 (Space of real-valued functions on X ) Let X be a set. Then the space

F(X ) = {f : X → R | f ‘is a function}

together with the standard scalar multiplication and summation defined for all λ ∈ R, and for all
f, g ∈ F(X ) by :

(λf)(x) := λf(x) ∀x ∈ X

(f + g)(x) := f(x) + g(x) ∀x ∈ X

forms a linear space over R. We call F(X ) the space of real-valued functions on X .

The Reproducing kernel Hilbert spaces on X are well-behaved sub-spaces of F(X ). This is
made precise in the following definition

18



Definition 2.3.6 (Reproducing kernel Hilbert spaces) Let X be a compact set. Let H ⊆
F(X ) be a Hilbert space. Then H is called a RKHS if there exists a kernel k on X satisfying :

• ∀x ∈ X : k(x, ·) ∈ H

• ∀f ∈ H,∀x ∈ X : 〈f, k(x, ·)〉H = f(x)

The second property is called "the reproducing property". We call k a reproducing kernel of H

Theorem 10 (Uniqueness of the kernel) Let X be a set and let H be an RKHS on X . Assume
both k and k̃ are reproducing kernels of H. Then k = k̃.

Theorem 11 (Moore-Aronszajn) Let k : X × X → R be positive definite kernel. There is a
unique RKHS H ⊆ RX with reproducing kernel k .

Remark 2 The feature map φ is not unique, only kernel k is unique.

To summarize up the RKHS theory, if H is a RKHS and X is non-empty set of points, then
for each x ∈ X there exists, by the Riesz’s representation theorem a function (i.e feature map φ)
φ(x) = k(x, ·) in H (called representer) with the reproducing property Fx(f) = 〈f, k(x, ·)〉H = f(x)
where Fx(f) design the evaluation application of f ∈ H on x.

The Cross-Covariance Operator and HSIC :

In the framework of RKHS (A. Gretton et al. [35]); Let X be a X−valued random vector with
a distribution PX and consider a RKHS space F of functionsf : X → R with kernel kX and dot
product 〈·, ·〉F . Similarly, we can also define a second random vector Y ∈ Y with distribution PY
and a RKHS space G of functions g : Y → R with kernel kY and dot product 〈·, ·〉G .

When F and G are RKHS with universal kernels kX and kY (i.e F and G are dense in the space
of bounded continuous functions 2.3.5) on the compact domains X and Y, all functions f and g are
continuous and bounded. We are now in a position to define the cross-covariance operator from
theorem 7 for every f ∈ F and g ∈ G:

〈f(X), CX,Y g(Y )〉 = Cov(f(X), g(Y )) = EXY ([f(X)− EX(f(X))] [g(Y )− EY (g(Y ))]) (2.69)

Definition 2.3.7 (The cross-covariance operator) The cross-covariance operator CXY asso-
ciated to the joint distribution PXY of (X,Y ) is the unique linear operator CXY : G → F :

CXY := EXY [(φ(x)− µX)⊗ (ψ(Y )− µY )]

where ⊗ denotes the tensor product, φ (resp. ψ) is a feature map of kX (resp. kY ), µX and µY
are such that :

〈µX , f〉F := EX [〈φ(X), f〉F ] = EX [f(X)]

〈µY , f〉F := EY [〈ψ(Y ), f〉F ] = EY [g(Y )]

The Cross-Covariance CXY operator was introduced by CR. Baker [36] for general Hilbert
spaces and by K. Fukumizu et al. [37] without investigating it in measuring dependencies

In the same framework of RKHS, and thanks to theorem 6 which characterizes the independence
with cross-covariance :

Lemma 12 (CXY and Independence) Let (X,Y ) be two random variables with the joint dis-
tribution PXY and let CXY cross-covariance operator associated to (X,Y )

The largest singular value of CXY is null iif X and Y are independent (2.70)
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The cross-covariance operator therefore induces an independence criterion, The Hilbert-Schmidt
independence criterion, proposed by A. Gretton et al. [28] and build upon on cross covariance
operators in RKHS.

Definition 2.3.8 (The Hilbert-Schmidt independence criterion) Given separable RKHSs F ,
G and a joint measure PXY , the Hilbert-Schmidt Independence Criterion (HSIC) is defined as the
Hilbert-Schmidt (HS) norm of the associated cross-covariance operator CXY :

HSIC(X,Y )F,G := ‖CXY ‖2HS

where the Hilbert-Schmidt HS norm of a linear operator C is defined as :

‖C‖2HS :=
∑
ij

〈Cvi ui〉2F (2.71)

where vi and uj are orthonormal basis of G and F , respectively. This is simply the generalization
of the Frobenius norm on matrices.

The HSIC criterion can also be expanded according to the following form (A. Gretton et al.
[28]) :

HSIC(X,Y )F,G = ‖CXY ‖2HS
= EX,X′,Y,Y ′kX (X,X ′) kY (Y, Y ′)

+ EX,X′kX (X,X ′)EY,Y ′kY (Y, Y ′)

− 2EX,Y [EX′kX (X,X ′)EY ′kY (Y, Y ′)]

(2.72)

where (X ′, Y ′) is an independent copy of (X,Y ) drawn from PXY .

As a special case, HSIC includes the distance covariance, one can notice the similarity between
the generalized distance covariance (see Eq.2.50) and the HSIC criterion (see Eq.2.72). Indeed, D.
Sejdinovic et al. [38] studied the linked between both measures and showed that :

V(X,Y ) = 4HSIC(X,Y )F,G (2.73)

As mentioned before, an important property of HSIC(X,Y )F,G is the theorem below :

Theorem 13 (CXY and Independence, A. Gretton et al. [28]) Denote by F and G two RKHSs
with universal kernels k and l on the compact domains X and Y respectively. We assume without
loss of generality that ‖f‖∞ ≤ 1 and ‖g‖∞ ≤ 1 for all f ∈ F and g ∈ F .

Then ‖CXY ‖HS = 0 if and only if X and Y are independent.

Moreover, B. K. Sriperumbudur et al. [39] show that the following kernels are universal :

• Gaussian kernel with length-scale σ > 0 : k(x, x′) = exp
(
−‖x−x

′‖2Ln
2σ2

)
• Exponential/Laplace kernel with length-scale σ > 0 : k(x, x′) = exp

(
−‖x−x

′‖
σ

)
• Matérn kernel with parameters σ and ν : kν(x, x′) = 21−ν

Γ(ν)

(√
2ν ‖x−x

′‖
ρ

)ν
Kν

(√
2ν ‖x−x

′‖
ρ

)
The kernel-based distance correlation (i.e HSIC coefficient) between X and Y is defined as :

R(X,Y )F,G =
HSIC(X,Y )F,G√

HSIC(X,X)F,GHSIC(Y, Y )G,G
(2.74)

Where the kernels inducing F and G have to be chosen within the class of universal kernels ( Back
to sensitivity analysis, we can finally propose a sensitivity index based on HSIC measure :

S
HSICF,G
Xk

= R(Xk, Y )F,G (2.75)
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Estimating HSIC criterion :

The main idea of estimating HSIC criterion is similar to empirical distance covariance in 2.50.
Assume that (Xi, Yi){i = 1, · · · , n} is a sample of the random vector (X,Y ) =, then the natural
empirical HSIC from Eq. 2.72 is :

HSICn(X,Y )F,G =
1

n2

∑
i,j=1

kX (Xi, Xj) ky (Yi, Yj)

+
1

n2

n∑
i,j=1

kX (Xi, Xj)
1

n2

n∑
i,j=1

kY (Yi, Yj)

− 2

n

n∑
i=1

 1

n

n∑
j=1

kX (Xi, Xj)
1

n

n∑
j=1

kY (Yi, Yj)


(2.76)

Let denote KX , KY the Gram matrices of kX , kY with entries KX(i, j) = kX(Xi, Xj) and
KY (i, j) = kY (Yi, Yj). and let H a n×n matrix with Hij = δij− 1

n . A. Gretton et al. [28] propose
the following consistent estimator for HSIC(X,Y )F,G :

HSICn(X,Y )F,G =
1

(n− 1)2
Tr(KXHKYH) (2.77)

They show that this estimator is biased by O(1/n) but the convergence is uniform. An unbiased
estimator is also introduced by L. Song et al. [40].

With this estimator, one can test whether the dependence is statistically significant or not for
two random variables. An advantage of HSIC(X,Y )F,G is that it can be computed in O(n2)
time, whereas distance covariance V(X,Y ) and other kernel methods cost at least O(n3) before
approximations are made.

Despite being in O(n2), using HSIC as an independence criterion still remains difficult to com-
pute when n is too large. A low rank decomposition of the Gram matrices via an incomplete
Cholesky decomposition could be useful to get an accurate approximation to HSIC and save com-
puting cost.

Lemma 14 (Efficient approximation by Cholesky decomposition, A. Gretton et al. [28])
Let K ≈ AAT and L ≈ BB, where A ∈ Rn×df and B ∈ Rn×dg . Then we may approximate
Tr(HKHL) in O(n(d2

f + d2
g)) time.

We also propose another method to save computing time while estimating HSIC(X,X)F,F
and HSIC(Y, Y )G,G by diagonalizing HK and HL by spectral theorem : HK = PDKP

T and
HL = QDLQ

T where P,Q ∈ O(Rn and DK , DL ∈ D(Rn)

Lemma 15 (Efficient approximation by eigen values) Tr[(HK)2] =
∑
λK∈Sp(HK) λ

2
K and

Tr[(HL)2] =
∑
λL∈Sp(HL) λ

2
L. Then we may approximate Tr(HKHK), Tr(HLHL) in O(n

2

2 ) time

2.4 Sensitivity measures : limits and discussion

The most important issues of sensitivity analysis methods are computational more than conceptual.
Indeed, we can present these issues for both classes of sensitivity measures :

• variance-based measures: the numerical computation of indices requires an evaluation func-
tion or numerical model f(·) to condition on an input Xi and estimate the conditional
expectation. However, on the one hand, one doesn’t know the physical or mathematical
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model behind it but has only observational data. In this case, it’s recommended to have a
good Machine Learning model to estimate these indices correctly. On the other hand, many
computer models require a lot of computational time to perform one run. It is impossible
(or at least not practical) to perform the number of runs needed to estimate Sobol’s indices
or Shapley values with the required precision.

• Dependence measures: Although they can be estimated directly from observational data
without any model, these kernel-based methods are still heavy to compute when n is too
large (n larger than 1000 for most common cases) as we deal with matrix product of many
matrices n × n. Moreover, the impact of choice kernels associated with HSIC should be
studied.

In the next chapter, and to ease the computational burden, we suggest Gaussian Processes
metamodel in which the computer model f(·) is costly to run or unknown. It is a usual engineering
practice for estimating variance-based sensitivity indices.
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Chapter 3

Gaussian Processes modeling

Contents
3.1 Gaussian Process and covariance functions . . . . . . . . . . . . . . 23
3.2 Gaussian Process regressor (kriging) . . . . . . . . . . . . . . . . . . . 26
3.3 Joint and conditional distribution : Kriging prediction . . . . . . . . 27
3.4 Estimating GP model parameters and hyper-parameters . . . . . . 29

3.4.1 Maximum Likelihood Estimator . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Bayesian full approach estimation . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Cross-Validation Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 31

The kriging method (G. Matheron [41], N.A.C. Cressie [42]) has been developed for spatial
interpolation problems; it takes into account spatial statistical structure of the estimated variable.
Sacks et al. [43] have extended the kriging principles to computer experiments by considering the
correlation between two responses of a computer code depending on the distance between input
variables.

The kriging model (also called Gaussian Process model) has been set up with its basis in
probability theory (C. E. Rasmussen and C. K. I. Williams [44]), it presents several advantages,
especially the interpolation and interpretability properties. Moreover, numerous authors (for ex-
ample, C. Currin et al. [45], T. Santner et al. [46] and E. Vazquez et al. [47]) show that this
model can provide a statistical framework to compute an efficient predictor of code response with
an associated uncertainty.

3.1 Gaussian Process and covariance functions

In this section, we define several notions of random process and covariance functions that will be
use in GP models in section 3.2). In all manuscripts, we consider a domain of interest D ⊆ Rd,

Definition 3.1.1 (Stochastic process) A real-valued random process (or random function) on
D is an application Y , that associates a random variable Y (x) to each x ∈ D. All the random
variables Y (x), for x ∈ D, are defined respectively to a common probability space (Ω,F ,P).

Alternatively a stochastic process is a function on Rd that is unknown, or that depends of
underlying random phenomena. It is characterized by :

• Mean functionM : x→M(x) = E(Z(x))

• Covariance function C : (x1, x2)→ C(x1, x2) = cov(Z(x1), Z(x2))
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Definition 3.1.2 (Trajectory of a random process) For each fixed ω ∈ Ω, the real-valued
function D : x → Y (ω, x) is called a trajectory (or a realization or a sample function) of the
random process Y .

Definition 3.1.3 (Gaussian variables and vectors) A random variable X is a Gaussian vari-
able with mean µ and variance σ2 > 0 (i.e X ∼ N (µ, σ2)) when its probability density function is:

fµ,σ2(x) =
1√
2πσ

exp(− (x− µ)2

2σ2
) (3.1)

A n-dimensional random vector Y = (Y1, · · · , Yn) is a Gaussian vector with mean vector µ =
E(Y ) and invertible covariance matrix K = cov(Y ), (i.e Y ∼ N (m,K)) when either :

• Any linear combination of its components is a Gaussian random variable.

• Its characteristic function has the form :

ΦY (x) = exp

(
i〈x, µ〉 − 1

2
x>Kx

)
∀x ∈ Rn (3.2)

Definition 3.1.4 (Gaussian Process, C. E. Rasmussen and C. K. I. Williams [44]) A stochas-
tic process Z on Rd is a Gaussian Process GP when for all (x1, ..., xn), the random vector (Z(x1), ..., Z(xn))
is Gaussian.

Gaussian Processes presents some advantages : they are simple to define and simulate from
their mean and covariance functions. and the Gaussian distribution is reasonable for modeling a
large variety of random variables.

To indicate that a random function f(x) follows a Gaussian process, we write :

f(x) ∼ GP(µ(x), k(x, x0))

where x and x0 are arbitrary input variables. the mean and covariance functions associated are:

µ(x) = E[f(x)] k(x, x0) = E[(f(x)− µ(x))(f(x0)− µ(x0))>]

The covariance function k(x, x0) is a symmetric positive semi-definite (i.e. kernel), usually
stationary (k(x, x0) = C(|x− x0|). We can also write k(x, x0) = σ2R(x, x0), where R(x, x0) is the
auto-correlation function and σ2 is the process variance.

We recall commonly used kernels in R :

• Matérn kernel : kν(x, x′) = 21−ν

Γ(ν)

(√
2ν ‖x−x

′‖
θ

)ν
Kν

(√
2ν ‖x−x

′‖
θ

)
where σ > 0 is the ampli-

tude, θ > 0 is the length-scale, Γ is the complete Gamma function and Kν is the modified
Bessel function of the second kind.

– σ2 > 0 is the variance amplitude, the larger σ2 is, the larger the scale of the trajectories.

– θ > 0 is the characteristic length-scale, it controls how fast the functions sampled from
your GP oscillate.

– ν is the smoothness hyper-parameter that controls the degree of regularity (differentia-
bility) of the resultant GP.

Some particular cases of Matérn kernel are when ν = 1
2 ,

3
2 ,

5
2 and ν →∞.

• Exponential kernel (ν = 1
2 ) : kExp(x, x′) = σ2 exp

(
− |x−x

′|
θ

)
corresponding to the known

Ornstein-Uhlenbeck process
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• Matérn 3/2 kernel (ν = 3
2 ) : kM3/2

(x, x′) = σ2

(
1 +
√

3
|x−x′|
θ

)
exp

(
−
√

3
|x−x′|
θ

)

• Matérn 5/2 kernel (ν = 5
2 ) : kM5/2

(x, x′) = σ2

(
1 +
√

5
|x−x′|
θ +

√
5

(x−x′)
2

3θ2

)
·exp

(
−
√

5
|x−x′|
θ

)
• Gaussian kernel (ν →∞) : kGauss(x, x′) = σ2 exp

(
−‖x−x

′‖22
2θ2

)
.

The choice of the covariance function is important as it enables to synthesize the information
from the Gaussian Process, see figures 3.1, 3.2 and 3.3.

Figure 3.1 – Trajectories of Gaussian processes for different covariance functions from left to right

Figure 3.2 – Influence of the variance amplitude σ2. trajectories of Gaussian processes : Matérn
3/2 with σ2 = 0.1, 1, 2 from left to right

In the case of a Gaussian process on Rd, the amplitude σ2 and smoothness ν are still defined as
one value, but the length-scale θ = (θ1, · · · , θd) ∈ Rd+ is now defined as a vector. when θi is partic-
ularly small, then the variable Xi is particularly important, this allows us to get a rank/hierarchy
of the input variables X1, · · · , Xd according to their correlation lengths ‘(θ1, · · · , θd)

As mentioned in the chapter 2, it is possible to combine the sum and the product of kernels
(See theorems 8 and 9), We can obtain a more complex covariance model based on classical kernels
in R :
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Figure 3.3 – Influence of the length-correlation θ. trajectories of Gaussian processes : Matérn 3/2
with θ = 0.01, 0.1, 0.5 from left to right

- The radial model (isotropic model) defined by :

Kradial(x, x
′) = σ2k


√√√√ d∑

i=1

|xi − x′i|
θ2
i

 (3.3)

- The tensorized product model defined by :

KTensorProduct(x, x
′) = σ2

d⊗
i=1

ki(xi, x
′
i, θi) (3.4)

- The tensorized additive model defined by :

KTensorSum(x, x′) =

d⊕
i=1

σ2
i ki(xi, x

′
i, θi) (3.5)

Other classical covariance functions can be build, such as the Power-exponential by tensorizing
the exponential kernel kExp parameterized also by 0 < p ≤ 2:

KPowExp(x, x
′) = σ2

d∏
i=1

exp

(
−
(
|xi − x′i|

θi

)p)
(3.6)

or the quasi-periodic GP (H. Tolba et al. [48]) by multiplying a periodic kernel by a non periodic
kernel.

3.2 Gaussian Process regressor (kriging)

Let us consider n realizations of a physical model or computer code. Each realization Y (x) of
the output corresponds to a d-dimensional input vector x = (x1, · · · , xd) ∈ D. The n points
corresponding to the model/code runs are called an experimental design and are denoted as
X =

(
x(1), · · · , x(n)

)
where x(i) = (x

(i)
1 , · · · , x(i)

d ) ∈ D. The outputs will be denoted as Y =(
y(1), · · · , y(n)

)
with y(i) = Y (x(i)). Gaussian Process GP modeling treats the deterministic re-

sponse y(x) as a realization of a random function Y (x), including a regression part and a centered
stochastic process.

Definition 3.2.1 (Gaussian Process modeling) Gaussian process modelling (i.e Kriging) as-
sumes that the map D : x→ Y = f(x) is a realization of a Gaussian process:

Y (x, ω) = ftrend(x) + Z(x, ω)

where :
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• x ∈ D ⊆ Rd is the input vector

• ftrend(x) =
∑p
i=1 βifi(x) = β>F(x) is the trend part, fi, i = 1, · · · , p are predefined (e.g.

polynomial) functions and β = {β1, · · · , βp} are the regression coefficients.

• Z(x, ω) is a stationary, zero-mean, with variance σ2 Gaussian Process :

E[Z(x)] = 0 and Var[Z(x)] = σ2 ∀x ∈ D

Hence, Gaussian Process regression is a Bayesian non-parametric regression which assumes a
GP prior over the regression functions (C. E. Rasmussen and C. K. I. Williams [44]), which can be
converted into a posterior over functions once some data has been observed. It consists in approx-
imating f(x) ∼ GP (µ(x), k(x, x0)) using a training set of n observations Dtrain = {(x(i), y(i)), i ∈
{1, · · · , n}} in order to predict y∗ = y(x∗) at a new point x∗ /∈ Dtrain.

There are three sub-cases of Kriging model, depending on the assumption made on the existing
knowledge of the model Y :

• The Simple Kriging : the mean function is assumed to be known i.e p = 1, f1 = 1 and known
constant β1. Equivalently, when working in the simple Kriging framework, we will consider
a centered Gaussian process Y .

• The Ordinary Kriging : the mean function is assumed to be constant but unknown i.e
p = 1, f1 = 1 and unknown constant β1

• The Universal Kriging : the mean function at x ∈ D is assumed to be of the form
∑p
i=1 βifi(x),

where fi is in set of arbitrary functions {fi(x) = xi−1, j = 1, ..., p} and unknown scalar coef-
ficients βi.

The parameters β = (β1, ..., βp) are subject to an estimation problem, they can be estimated by
Generalized Least Squares.

3.3 Joint and conditional distribution : Kriging prediction

Under the hypothesis of a GP model (3.2.1), for each point x(i) ∈ D , Y (i) := Y (x(i)) can be
written :

Y (i) =

p∑
j=1

βjfj

(
x(i)
)

+ σZ̄ = f (i)>β + σZ̄ (3.7)

where Z̄ ∼ N (0, 1) and f (i) =
(
fj
(
x(i)
))
j=1,..,p

.

Y (i) is then a Gaussian variable :

Y (i) ∼ N (f (i)>β, σ2) with Cov[Y (i), Y (j)] = σ2Rθ(x
(i), x(j)) = Kij (3.8)

where Rθ the auto-correlation function.

As a result, the joint distribution of the learning sample Y is Gaussian :

Y ∼ N (Fβ, σ2Rθ) = N (Fβ,K) (3.9)

where F ∈ Rn×p is the regression matrix such that Fij = fj(x
(i)), i = 1, .., n, j = 1, ..., p and

K = σ2Rθ ∈ Rn×n is the covariance matrix.

Proof : Let Y =
(
Y (1), ..., Y (n)

)
be a random vector with mean E(Y ) =

(
f (1)>β, ..., f (n)>β

)
=

Fβ and covariance matrix K = (Ki,j)1≤i,j≤n. K is symmetric definite positive, by Cholesky de-
composition there exists a matrix A ∈ Rn such that : K = AA>. We can write then Y = Fβ+AZ
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where Z ∼ N (0n,1, In).

φY (x) = exp [i〈x,Fβ〉]E [exp(i〈x,AZ〉)]
= exp [i〈x,Fβ〉]E

[
exp(i〈A>x, Z〉)

]
= exp [i〈x,Fβ〉] ΦZ

(
A>x

)
= exp [i〈t,Fβ〉] exp

[
−1

2
x>AA>x

]
= exp

[
i〈x,Fβ〉 − 1

2
x>Kx

]
(3.10)

for x ∈ R(n,1), which proves the Gaussianity of Y .

Using this result and in the same setting, we want to predict y∗ the value of f at a new fixed
point x∗ = {x∗1, · · · , x∗d}. The joint probability distribution of (Y ,y∗) of the observed data Y and
y∗ = f(x∗) is given by: [

Y
y∗

]
∼ N

([
F>β

f∗>β

]
,

[
K k∗

k∗> σ2

])
(3.11)

where k∗ = k(X,x∗; θ) ∈ Rn the cross-covariance vector and f∗ = {f1(x∗), · · · , fp(x∗)} the vector
of regressors in x∗ .

The theorem below is useful to deduce the distribution of the posterior (F. Bachoc [49])

Theorem 16 (Gaussian conditioning theorem) Let (Y1, Y2) be a Gaussian vector such as :(
Y 1

Y 2

)
∼ N

((
µ1

µ2

)
,

(
K1,1 K1,2

K2,1 K2,2

))
(3.12)

Then, Y2|Y1 = y1 (i.e Y2 conditionally on Y1 = y1) follows a Gaussian distribution

Y2|Y1 = y1 ∼ N
(
µ2 + K2,1K

−1
1,1 (y1 − µ1) ,K2,2 −K2,1K

−1
1,1K1,2

)
(3.13)

By conditioning this joint distribution on the learning sample Y in 3.11, It can be shown that
the conditional distribution of y∗ is also Gaussian :

y∗|X,Y ,x∗ ∼ N
(
µ(x∗), σ2(x∗)

)
(3.14)

where:
µ(x∗) = f∗>β + k∗>K(Y − Fβ) (3.15)

σ2(x∗) = σ2 − k∗>K−1 k∗ +
(
f∗ − F K−1k∗

)> (
F>K−1F

)> (
f∗ − F K−1k∗

)
(3.16)

The conditional mean, known as kriging mean and denoted now by ỹ (Eq. 3.18), is used as a
predictor. It has a regression part f∗>β =

∑p
j=1 βifj(x

∗) and a local correction. It can be applied
to any other new point xnew :

ỹ(xnew) := E(Y (xnew)|Y ) = fnew
>β + k(xnew)

>
K(Y − Fβ) (3.17)

Thus ỹ, the mean prediction for Y (xnew), can be written as a linear combination of kernel
functions, each one centered on a training point:

ỹ(xnew) = f(xnew)
>
β + k(xnew)

>
K(Y − Fβ) (3.18)

=

p∑
j=1

βjfj(xnew) +

n∑
i=1

αik(x(i), xnew) (3.19)
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where α = K(Y − Fβ).

These coefficients αi will be referred to as parameters; they are updated each time a new
observation is made (as opposed to the parameters of the kernel, referred to as hyperparameters,
which are not updated once training is over (see subsection)

Remark 3 The kernel part of prediction function xnew →
∑n
i=1 αik(x(i), xnew) vanishes when

xnew is far from the observation points {x(1), ..., x(n)}. Hence the prediction of 3.19 is essentially
meant for interpolation.

The variance formula corresponds (Eq. 3.20) to the Mean Squared Error (MSE) of this predictor
and is also known as the kriging variance σ̃2. It gives a local indicator of the prediction accuracy.

σ̃2(xnew) := Var(Y (xnew)|Y ) = Var(Y (xnew)− k(xnew)
>
K−1 k(xnew)+ (3.20)(

fnew − F K−1k(xnew)
)> (

F>K−1F
)−1 (

fnew − F K−1k(xnew)
)

(3.21)

Due to the Gaussianity of the predictor Y (xnew) ∼ N
(
ỹ(xnew), σ̃2(xnew)

)
one can derive

confidence intervals on the prediction with confidence level (1− α), e.g. 95%, one gets:

ỹ(xnew)− qα/2 × σ̃2(xnew) ≤ Y (xnew) ≤ ỹ(xnew) + qα/2 × σ̃2(xnew) (3.22)

In particular, for (1− α) = 95% :

ỹ(xnew)− 1.96× σ̃2(xnew) ≤ Y (xnew) ≤ ỹ(xnew) + 1.96× σ̃2(xnew) (3.23)

The most outstanding advantage of GP model compared to other models comes from the
previous equations. In fact, kriging model provides an mathematical formula for the distribution
of the output variable at an arbitrary new point xnew (Eq. 3.18, Eq. 3.20 and 3.22). This
distribution formula can be used for sensitivity analysis and uncertainty quantification, as well as
for quantile evaluation (J. Oakley et al. [50]) instead of costly methods based for example on a
Monte Carlo algorithm. All these considerations and possible extensions of GP modeling of GP
represent significant advantages (C. Currin et al.[45], C. E. Rasmussen and C. K. I. Williams [44]).

Remark 4 When xnew = x(i) for a particular i, it results from 3.18 and 3.20 that : ỹ(x(i)) = yi
and σ̃2(x(i)) = 0. We say that the GP predictor interpolates the experimental design : the prediction
is the value itself and the associated uncertainty is zero.

3.4 Estimating GP model parameters and hyper-parameters

The GP model 3.7 is characterized by the regression parameter vector β and the covariance pa-
rameters (σ, θ) (in addition p for Power-Exponential kernel). In practice, we know neither the
parameters vector β of nor the hyperparameters vector (σ, θ).

Constructing a GP model and computing the kriging mean and variance as shown in 3.18 and
3.20 implies estimating these parameters. A choice can be made a prior based on prior knowledge
of the distribution and data, then a estimation is performed from the experimental design D =
{(X(1), Y (1)), ..., (X(n), Y (n))}. This is commonly done by Maximum Likelihood method (ML) or
CV, which makes the GP model be an Bayesian estimator of the maximum a posterior.
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3.4.1 Maximum Likelihood Estimator

Given a GPmodel and Assuming that data follows a joint Gaussian distribution Y ∼ N (Fβ, σ2R(θ))
the negative log-likelihood of Y can be written as:

− logL
(
β, σ2, θ|Y

)
=

1

2σ2
(Y − Fβ)>R−1

θ (Y − Fβ) +
n

2
log(2π)

+
n

2
log
(
σ2
)

+
1

2
log(detRθ)

(3.24)

The solution (β̂, σ̂2) is obtained by solving :

∂(− logL)

∂β
= F>R−1

θ (Y − Fβ) = 0 ;
∂(− logL)

∂σ2
= 0 (3.25)

Given the covariance parameters (σ, θ; p), the maximum likelihood estimator of β̂ML is the
generalized least squares estimator:

β̂ML(θ) =
(
FTR−1

θ F
)−1

F>R−1
θ Y (3.26)

and the maximum likelihood estimator of σ̂ML is:

σ̂2
ML(θ) =

1

n
(Y − F · β̂ML)>R−1

θ · (Y − Fβ̂ML) (3.27)

As σ̂2
ML and β̂ML depend on hyper-parameters of covariance θ. We Substitute them into the

log-likelihood − logL to obtain the optimal choice θ minimizing equivalently the reduced likelihood
function − log L̃ such that :

− log L̃(θ) = ln
(
σ̂2
ML(θ)

)
+

1

n
ln (detRθ) (3.28)

Thus, maximum likelihood estimation of θ̂ML consists in numerical optimization of the function
defined as follows:

θ̂ML ∈ argminθ∈Θ− log L̃(θ) (3.29)

Minimizing function − log L̃ in 3.29 is an optimization problem that is numerically costly and
difficult to solve with O(n3) computational cost. Several difficulties make this optimization prob-
lem computationally heavy, mainly, the large number of parameters which imposes the use of a
sequential method of resolution, where different parameters are introduced step by step, and the
large parameter’s domain due to and the lack of prior bounds requires an exploratory algorithm
(stochastic gradient, multistart ...) able to explore the domain in an optimal way.

3.4.2 Bayesian full approach estimation

In Maximum Likelihood, the estimator MLE we look for point (β, σ2, θ) that maximizes the likeli-
hood L

(
β, σ2, θ|Y

)
as in 3.24. The optimal value, (βML, σ

2
ML, θML) is not a random variable but

a point estimate (i.e a Dirac distribution centred on (βML, σ
2
ML, θML))

Bayesian estimation integrates the uncertainty about the unknown parameter and treats (β, σ2, θ)
as a random variable. In this method, the estimated hyper-parameters are probability density func-
tions, rather than estimating a single point as in Maximum Likelihood MLE.

We recall the Bayes’s rule in theorem 17 below:
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Theorem 17 (Bayes’ Rule for parameters distribution) Let θ be a set of probability distri-
bution parameters that best explains the observations Y , the Bayes’ Rule assumes that:

fθ|Y =
fY |θ fθ

fY
i.e Posterior =

Likelihood× Prior
Evidence

The posterior hyper-parameters θposterior for the model are given by :

fθ|Y ,X =
fY |θ,X fθ

fY |X
(3.30)

where fY |X is the joint distribution of Y given by Eq 3.9.

3.4.3 Cross-Validation Estimator

For this subsection on the Cross Validation estimation which represent an alternative to estimate
the covariance hyper-parameters (σ2, θ). The regression coefficients β will not be studied with this
estimation method.

Definition 3.4.1 (Leave-One-Out Mean Square Error criterion) The Leave-One-Out (LOO)
Mean Square Error (MSE) criterion is defined by :

LOO(θ) :=
1

n

n∑
i=1

(yi − ŷi,θ)
2 (3.31)

where, for 1 ≤ i ≤ n, ŷi,θ is the prediction given in 3.18 of yi by a GP model when trained on
{y1, ..., yi−1, yi+1, ..., yn}, given the covariance function Kσ,θ = σ2Rθ

F. Bachoc [49] showed that LOO(θ) can be written with explicit quadratic forms :

LOO(θ) =
1

n
y>R̃−θ Diag

(
R̃−θ

)−2

R̃−θ y (3.32)

where R̃−θ := R−1
θ −R−1

θ F
(
F>R−1

θ F
)−1

F>R−1
θ and F is the regression matrix as defined in 3.9.

The Cross-Validation estimator CV aims to estimate θ by minimizing the LOO MSE criterion

θ̂MSE ∈ argminθ∈Θ

1

n
y>R̃−θ Diag

(
R̃−θ

)−2

R̃−θ y. (3.33)

This criterion reflects only the quality of the point wise prediction of 3.18. It doesn’t estimate
The variance parameter σ2. We define another Cross-Validation estimator for this purpose :

Definition 3.4.2 (Leave-One-Out variance estimator) The LOO Cross-Validation estima-
tor of σ2 is defined as :

σ̂2
MSE =

1

n

n∑
i=1

(
yi − ŷi,θ̂MSE

)2

ĉ2
i,θ̂MSE

(3.34)

where θ̂MSE is obtain from 3.33

F. Bachoc [49] also showed that σ̂2
LOO can be written with an explicit quadratic forms:

σ̂2
MSE =

1

n
y>R̃−

θ̃MSE
Diag

(
R̃−
θ̃MSE

)−1

R̃−
θ̃MSE

y (3.35)
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The expressions 3.45 and 3.35 allow to estimate θ by Cross-Validation by minimizing a criterion
that has the same computational complexity of O(n3) as Maximum Likelihood, but it has the
advantage of being more efficient when the covariance function is mis-specified.

In the following part, Let interest us with the confidence intervals of the GP model 3.22, we
define a new metric, called the (1− α)-probability score, denoted Pscore1−α

Definition 3.4.3 ((1− α)-probability score) Let y = {y(1), ..., y(n)} and ỹ = {ỹ(1), ..., ỹ(n)}
(resp σ̃ = {σ̃(1), ..., σ̃(n)}) be the mean (resp standard-deviation) predictions of y given by a GP
model with covariance matrix Kσ,θ = σ2Rθ

(1 − α)-probability score score describes the probability of getting y(i) inside in predictions in-
tervals with confidence level (1− α)

Pscore1−α (θ, σ) = P(y ∈ PI1−α(ỹ)) = P1−α/2

(
y − ỹ
σ̃

)
− Pα/2

(
y − ỹ
σ̃

)
(3.36)

Empirically, Pscore1−α is the percentage of points y(i) belonging to prediction intervals PI1−α(ỹθ)).
Ideally, it should be close to 1 − α (e.g. if we define 1 − α = 95% (i.e α = 5%), we would like to
have 95% of points inside these intervals, see 3.4)

This criterion is very useful in our case, it will allow us to measure if a GP model is reliable in
terms of predictions, otherwise, optimize it to fit and respect the P90/P10 rules.

Definition 3.4.4 (Leave-One-Out (1− α)-probability score) Let y = {y1, ..., yn} and ỹ, σ̃)
be the mean, standard-deviation predictions of y by a given GP model.

LOOPscore1−α
(θ, σ) =

(
Pscore1−α − (1− α)

)2 (3.37)

The previous LOOPscore1−α
can be simplified. One can write P(y−ỹσ̃ ) as an expectation :

P1−α/2

(
y − ỹθ
σ̃θ

)
= E

(
1 y−ỹθ

σ̃θ
≤q1−α/2

)
' 1

n

n∑
i=1

1 yi−ỹi
σ̃i
≤q1−α/2

(3.38)

Pα/2
(
y − ỹθ
σ̃θ

)
= E

(
1 y−ỹθ

σ̃θ
≤qα/2

)
' 1

n

n∑
i=1

1 yi−ỹi
σ̃i
≤qα/2

(3.39)

Such that :

1 yi−ỹi
σ̃i
≤q1−α/2

= 1
q1−α/2−

yi−ỹi
σ̃i
≥0

=

(
q1−α/2 − yi−ỹi

σ̃i

)+∣∣∣q1−α/2 − yi−ỹi
σ̃i

∣∣∣ =
1

2

1 +
q1−α/2 − yi−ỹi

σ̃i√(
q1−α/2 − yi−ỹi

σ̃i

)2

 (3.40)

1 yi−ỹi
σ̃i

<qα/2
= 1

qα/2−
yi−ỹi
σ̃i

>0
=

(
qα/2 − yi−ỹi

σ̃i

)+∣∣∣qα/2 − yi−ỹi
σ̃i

∣∣∣ =
1

2

1 +
qα/2 − yi−ỹi

σ̃i√(
qα/2 − yi−ỹi

σ̃i

)2

 (3.41)

By Plugging the obtained expressions in 3.40 and 3.41 in LOOPscore1−α
3.37 :

LOOPscore1−α
=

(
1

n

n∑
i=1

1 yi−ỹi
σ̃i
≤q1−α/2

− 1

n

n∑
i=1

1 yi−ỹi
σ̃i

<qα/2
− (1− α)

)2

=

 1

2n

n∑
i=1

 q1−α/2 − yi−ỹi
σ̃i√(

q1−α/2 − yi−ỹi
σ̃i

)2
−

qα/2 − yi−ỹi
σ̃i√(

qα/2 − yi−ỹi
σ̃i

)2

− (1− α)


2

=

(
1

2n

n∑
i=1

(
h

(
q1−α/2 −

yi − ỹi
σ̃i

)
− h

(
qα/2 −

yi − ỹi
σ̃i

))
− (1− α)

)2

(3.42)
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(a)

(b)

Figure 3.4 – Case of α = 5%; a) Hyper-parameters are optimized by Maximum Likelihood 3.4.1,
only 55, 7% of points are inside Predictions Intervals. b) Hyper-parameters are optimized in such
way to have exactly 1− α = 95% of points

where h(x) = x√
x2

when x > 0 and h(0) = 1

In LOO-CV, the expressions of ỹi and σ̃i are given by (C. E. Rassmussen & C. K. I. Williams
[44]) :

ỹi = yi −
[
K−1y

]
i

[K−1]ii
, and σ2

i =
1

[K−1]ii
(3.43)

Replacing these values in the equation 3.42 leads to :

LOOPscore1−α
=

(
1

2n

n∑
i=1

(
h

(
q1−α/2 +

[
K−1y

]
i√

[K−1]ii

)
− h

(
qα/2 +

[
K−1y

]
i√

[K−1]ii

))
− (1− α)

)2

(3.44)

Hence, a Cross-Validation estimator of σ, θ for fitting PI with confidence level (1 − α) is by
minimizing the LOOPscore1−α

above :

(θ̂score, σ̂score) ∈ argminθ∈Θ,σ∈Σ LOOPscore1−α
(θ, σ) (3.45)
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Remark 5 We tried to minimize argminθ∈Θ,σ∈Σ (Pscoreα − (1− α))
2 by solving ∇ (Pscoreα − (1− α))

2
=

0 but this method seems to be very heavy to solve even with optimisation algorithms.

Remark 6 Some packages (e.g. "kergp") provide directly LOO-CV predictive mean ỹi and vari-
ance σ̃i while building Gaussian Process model. In this case, minimizing LOO

(
Pscore1−α

)
as in 3.42

becomes much easier and faster than 3.44 which requires inverting K.

To summarize, the Cross-Validation procedure is applied in two separate cases according to
two different criterion : for Mean Square Error criterion we give priority first to the point-wise
prediction at a new point to estimate θ, and second estimate the global variance σ2 adapted to the
Leave-One-Out prediction errors. For (1 − α)-probability score, θ, σ are optimized so prediction
intervals length will be fitted to respect the confidence level (1−α). Combining both criteria Mean
Square Error MSE and (1− α)-probability score will be subject of a future research.
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Chapter 4

Modelling Methodology with
Gaussian Process

Contents
4.1 Step 1 - Standardization of numerical input variables . . . . . . . . 35
4.2 Step 2 - Screening initial input variables by decreasing influence . 36
4.3 Step 3: GP joint modeling with sequential building process . . . . 36
4.4 Step 4: Assessment of GP model predictivity . . . . . . . . . . . . . 37
4.5 Step 5: Optimizing the final GPs for special criterion’s . . . . . . . 38
4.6 Step 6: Sensitivity analysis of the GP model . . . . . . . . . . . . . . 39

Although being a robust statistical model for supervised learning and uncertainty quantifica-
tion, the theoretical efficiency of the Gaussian Process is limited when modelling a function in a
high-dimension domain. Unfortunately, the Gaussian Process model is computationally expensive
and not well adapted to high-dimensional problems, principally due to inversion problems of the
covariance matrix in the kriging mean 3.18 and variance 3.20, and to hyper-parameters estimation,
while solving the minimization problems by Maximum likelihood and Cross-Validation for meth-
ods, which has a computational cost of O(n3 + n2d). Thus, the kriging model becomes unfeasible
with many input variables d and requires a large number of training points n � 10d in addition
to computing sensitivity indices whom the complexity increases exponentially with the number of
inputs.

In this kind of situation, variable selection techniques must be applied to reduce the complexity
of the model. We deal with this problem by following a new methodology, proposed by B. Iooss
and A. Marrel ([51], 2017), allowing to build a GP model with a large number of inputs efficiently
by screening and joint modelling. It could also be applied to other types of Machine Learning
models. The idea behind the methodology is simple, include the first influent variables and keep
the non-selected variables to quantify the uncertainty caused by the dimensionality reduction.
Our objective is twofold: Build a highly predictive GP model with a few variables with a proper
uncertainty, and analyze the sensitivity of parameters that control production.

4.1 Step 1 - Standardization of numerical input variables

The suitable procedure to construct a GP model requires optimal space filling designs (SFD) with
orthogonality properties (K-T. Fang et al. [52]) (e.g. Hypercube Latin Sampling (LHS) with
Maximin criterion or L2−discrepancy). Such designs provide a full coverage of the input space an
allows investigating the whole variation domain of the uncertain parameters.

However, in Gas and Oil industry, the production data have been generated a long time ago
according to a specific or unknown distribution, building a space filling designs is probably not
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possible anymore. In this case, all not available data are removed and a standardization is applied
to the original data according to the Z−score :

Z =
X − µ
σ

(4.1)

where X is a given input, µ = E(X) is the mean of X and σ2 = Var(X) is the standard deviation.
The standardization has the objective of increasing the robustness of hyper-parameter estimating
algorithm, and simplifying the choices of bounds and starting points.

Remark 7 We do not change the input probability distributions after standardization, they are
used later in the sensitivity analysis.

Remark 8 The categorical inputs are not taken into account in this stage. This task will be
accomplished in the future by building group kernels (O. Roustant et al. [53])

4.2 Step 2 - Screening initial input variables by decreasing
influence

The sensitivity measures, as introduced in chapter 2, are very useful in prioritizing inputs and can
be quantitatively interpreted. They represent our main tool to identify the most influent variables
from a set X = {X1, ..., Xd} and sort them by decreasing order of influence. This step is called :
screening inputs.

In our case, we don’t have any computer code behind well Oil and Gas production, so, as a
sort criterion, we choose the kernel-based distance correlation R(Xk, Y )F‖,G (HSIC coefficient 2.74)
between the input Xk variable and the response Y . Thanks to the non-linear kernels which remove
hypotheses such as linearity or monotony, the HSIC measure considers dependencies that are more
complex will measure of the influence of inputs X on the output Y efficiently. Furthermore, the
R(X, Y )F,G can help to divide input variables X into two sub-groups : "the significant ones"
and "the non-significant ones", based on the independence statistical test and depending on the
significance level of these tests. The "significant ones" will be taken into account sequentially
while building GP model. At the end of this step, the "significant inputs" are ordered in a set
Xsort = {XΠ(1), ..., XΠ(d)} where Π(j) design the index of jth most influent variable

Remark 9 Another screening method, commonly used in ensemble learning algorithms, can be
applied by exploring variables sequentially : At iteration jth, look for variable that maximizes the
predictivity coefficient Q2 (see section 4.4) :

XΠ(j+1) = argmaxi/∈Π{1,...,j}Q
2(XΠ{1,...,j} ∪Xi) (4.2)

4.3 Step 3: GP joint modeling with sequential building pro-
cess

To estimate GP model hyper-parameters faster and efficiently, we precede in a progressive proce-
dure (loop on all input variables in X) that combines sorted inputs from screening step and joint
modeling.

At each iteration j, we consider only the j first sorted inputs in explanatory inputs variables
Xexp = {XΠ(1), ..., XΠ(j)} while the remaining inputs are considered as a stochastic parameter
Xε = {XΠ(j+1), ..., XΠ(d)}, then we perform a joint GP modeling.
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The approach, as described in [54] and in [51], consists on building two GP models with Xexp

to fit mean and dispersion components such as :

Ym (Xexp) = E (Y |Xexp)

Yd (Xexp) = Var (Y |Xexp) = E
[
(Y − Ym (Xexp))

2 |Xexp

] (4.3)

The first GP model is built from a defined covariance model (e.g. Matérn 3/2) with homoscedas-
tic nugget effect, GP jm,1 for the mean component to fit Y . Then a second GP, denoted GP jd,1, is
built for the dispersion component with the same covariance model to fit the squared residuals
(Y − Ỹm,1)2 from the predictor of GP jm,1.

GP jd,1 estimates the dispersion error at each point, it can be considered as the value of the
heteroscedastic nugget effect. The nugget effect is thus updated in the covariance matrix Kθ.
We repeat the same step by building more GPs GP jm,i and GP jd,i on the mean and dispersion
component and updating the estimated nugget, but it seems that one GP jm,2 and GP jd,2 is enough
to remove the homoscedastic hypothesis.

The final GP GP j model is built with the updated heteroscedastic nugget effect. Its hyper-
parameters are optimized by taking hyper-parameters obtained at the (j−1)th iteration as starting
points for the optimization.

This procedure is summarized up in the following algorithm :

Algorithm 1 Sequential procedure of joint modeling

Ensure: Xsort = {XΠ(1), ..., XΠ(d)}
for j = 1...d do
(0) Set Xexp == {XΠ(1), ..., XΠ(j)}
(1) Build a GP model GP jm,1 with Xexp to fit Y and estimates Ỹm,1 = E (Y |Xexp)

(2) Build a GP model GP jd,1 with Xexp to fit Y and estimates Ỹd,1 = E
[(
Y − Ỹm,1

)2

|Xexp

]
(3) Update the covariance matrix by the estimated nugget effect ε = Ỹd,1
Kθ,σ ← Kθ,σ + εIn
(4) Build a GP model GP jm,2 to fit Y with the new covariance matrix Kθ and estimates
Ỹm,2 = E (Y |Xexp)

(5) Repeat (2) and (3) using a GP model GP jd,2
(6) Build a GP model GP j with Xexp to fit Ỹ = E (Y |Xexp)
(7) Estimates the new hyper-parameters (σ, θ, β)j by taking (σ, θ, β)j−1 as starting point
(8) Computing the model accuracy Qj2

Q2
j = 1−

∑ntest
i=1 (yi − ŷi)2∑ntest
i=1 (yi − y)

2 (4.4)

end for

4.4 Step 4: Assessment of GP model predictivity

The accuracy coefficient Q2, corresponding to the classical coefficient of determination R2, is
computed for a test sample or by Cross-Validation, to evaluate the accuracy of the model:

Q2
X = 1−

∑ntest
i=1

(
Yi − Ỹi

)2

∑ntest
i=1

(
Yi − Y

)2 (4.5)

where Y = {Y1, ..., Yntest} denotes the ntest observations of the test set, Y = 1
ntest

∑ntest
i=1 Yi

is their empirical mean and Ỹ = {Ỹ1, ..., Ỹntest} represents the GP model predicted values obtain
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from Eq. 3.18, built on X with estimated parameters (σ, θ, β). The closer to one the Q2, the better
the accuracy of the model

Other simple validation criteria can be used: the mean absolute error (MAE), the mean square
error MSE (see, for example, J. P. C. Kleijnen and R. G. Sargent [55]). Some statistical and
graphical analyses of residuals (e.g. QQ-plot) can also provide detailed descriptions and diagnostics.

Definition 4.4.1 (The Mean Square Error MSE ) Given a predictor f∗, Y the vector of n
observed values and Ỹ the vector of predictions of Y by f∗. The Mean Square Error MSE of f∗ is
defined as the variance of predictions errors (residuals):

MSE =
1

n

n∑
i=1

(
Yi − Ỹi

)2

(4.6)

MSE provides information about the goodness of predictor fitting. The smaller the MSE value, the
better the predictions are.

Definition 4.4.2 (The Root Mean Square Error RMSE ) The Root Mean Square Error RMSE
is defined as the standard deviation of the prediction errors (residuals):

RMSE =

√√√√ 1

n

n∑
i=1

(
Yi − Ỹi

)2

=
√
MSE (4.7)

Definition 4.4.3 (The Mean Absolute Error MAE) The Mean Absolute Error MAE is de-
fined similarly to The Mean Square Error MSE expect that it takes the absolute value of the pre-
diction errors (residuals) :

MAE =
1

n

n∑
i=1

∣∣∣Yi − Ỹi∣∣∣ (4.8)

Remark 10 Q2 is a biased criterion because one can obtain a different score for the same pre-
dictions when the observations Y are dispersed from Y . It is important to consider always Mean
Square Errors MSE

Remark 11 MSE is a biased criterion because it penalizes large errors (e.g. outliers) than small
errors. MAE is useful in this case as it penalizes errors in the same way whether they are small
or large.

At this step, we explore all families of covariance functions described in section 3.1 and different
covariance structures until find the appropriate model that builds the optimal kriging model. At
the end, we draw a graph presenting the evolution of model’s accuracy Q2 with features or number
of variables added into the model.

4.5 Step 5: Optimizing the final GPs for special criterion’s

Once step 4.3 and 4.4 are done, we investigate the "accuracy vs features" graph to see at which
variable the accuracy Q2 stagnate or fall, so we can build two GP models : GPpred that will
be used for the predictive part and uncertainty quantification by considering only the first vari-
ables increasing accuracy, and one other GPglobal for the sensitivity analysis of all input variables
(variance-based sensitivity measures vs dependence measures).
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• The first model GPpred is built from p ≤ d variables which makes him faster in estimating
procedure. GPpred is used to predict production at given time or the oil/gas max rate, its
hyper-parameters (σML, θML, βML) are estimated by Maximum likelihood for an accurate
faithful model in a firstly, then we estimate (θscoreCV , σscoreCV ) by Cross-Validation method with
the same βML to fit the (1 − α)-probability score criterion. In the end, we get a predictive
model respecting the P10/P90 with a reasonable Q2 .

• The second GPglobal is built as explained in step 4.3 using all inputs variables. The main
criterion is MSE for point-wise prediction, it’s preferable to have the higher Q2 with both
estimators (Maximum Likelihood and Cross-Validation). GPglobal will be used mainly to
estimate variance-based sensitivity measures (Sobol and Shapley).

4.6 Step 6: Sensitivity analysis of the GP model

The last step is dedicated to sensitivity analysis of production data using GPglobal, we study
the influence of parameters and the uncertainty propagation by computing Sobol’s first-order,
total effect and Shapley value for each variable (Although we still work on high dimensional with
GPglobal). We compare in particular these indices with HSIC measure.
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Chapter 5

Application and results
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5.1 Application to Analytical functions

In this section, dedicated to the first experiments, we focus on GP kriging for different analytical
functions, considered as test case, where the dimensionality varies from d = 2 to d = 20. The ob-
jective is to compare GP joint model with sequential approach against simple GP model, Maximum
Likelihood and Cross-Validation estimators and sensitivity indices.

Let us consider the following analytical functions, defined on the hypercube X ∈ [0, 1]d :

• O. Roustant et al. (2018) [53] Additive function :

faddfun6d(X) = X3
1 + cos(πX2) + |X3| sin(X2

3 ) + 3X3
4 + 3 cos(πX5) + 3|X6| sin(X2

6 ) (5.1)

• H. Moon (2010) [56] Low-Dimensionality function :

fMoonLD(X) = X1 +X2 + 3X1X3 (5.2)

• H. Moon et al. (2012) [57] High-Dimensionality function :

fMoonHD(X) = −19.71X1X18 + 23.72X1X19 − 13.34X2
19 + 28.99X7X12 (5.3)

• W. J. Morokoff and R. E. Caflisch (1995) [58] function :

fMorokoff (X) =

(
1 +

1

d

)d d∏
i=1

X
1/d
i (5.4)
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• T. Crestaux et al. (2009) [59] Sobol G-function :

fSobol(X) =

d=8∏
i=1

|4Xi − 2 + ai|
1 + ai

(5.5)

where ai are parameters, such that ai ≥ 0.

• M. D. Morris et al. (2006) [60] function :

fMorris(X) = α

k∑
i=1

Xi + β

k∑
i<j=2

XiXj

 (5.6)

where α =
√

12 − 6
√

0.1 (k − 1) , β = 12
√

0.1 (k − 1), i, j = {1, ..., 20} and k = 10 is an
integer controlling the number of influential inputs.

• C. Linkletter et al. (2006) [61] decreasing function :

fLinkletter(X) = 0.2X1 +
0.2

2
X2 +

0.2

4
X3 +

0.2

8
X4 +

0.2

16
X5 +

0.2

32
X6 +

0.2

64
X7 +

0.2

128
X8 (5.7)

• T. Ishigami and T. Homma (1991) [62] function :

fIshigami(X) = sin(πX1) + a sin(πX2)2 + bX4
3 sin(πX1) (5.8)

where a = 7 and b = 0.1 (Marrel et al.)

• Testing function :

fTest(X) = sin(πX1) + cos

(
π
X2

4

)
+
√
X1X2 + 0.X3 (5.9)

X = {X1, ..., Xd} are assumed to be i.i.d variables, except in some cases in the subsection 5.1.3)
where we deal with dependent variables. The "kergp" package, available on R-Cran is used while
building GP kriging model following (See 4.4 in 4). Finally, the training Design of Experiments
(DoE) is a Latin Hypercube Sample LHS with nFit = 50 points whereas the testing DoE is also a
LHS built from nV al = 200 points.

5.1.1 Maximum Likelihood vs Cross-Validation

Firstly, for each function, two GP models are built using Maximum Likelihood estimator and
Cross-Validation estimator. The metrics used to compare both models are RMSE (See 4.4.2) and
prediction accuracy Q2 (See 4.5), the table 5.1 summarizes the results :

RMSE MLE RMSE Cross-Validation Q2 MLE Q2 Cross-Validation

Additive fun (d = 6) 0,325 0,191 0,983 0,994
Moon fun HD (d = 20) 7,353 3,042 0,149 0,759
Moon fun SD (d = 3) 8,104.10−4 0,101 0,999 0,988
Morokoff.fun (d = 3) 0,072 0,074 0,974 0,962
Morokoff.fun (d = 10) 0,127 0,134 0,855 0,837
Test fun (d = 3) 0,011 0,013 0,999 0,999
Sobol fun (d = 8) 0,181 0,214 0,931 0,904
Morris fun (d = 20) 37,16 33,16 -0,008 0,221
Linkletter fun (d = 8) 1,76.10−6 2,27.10−6 0,999 0,999
Ishigami fun (d = 3) 33,4.10−4 5,29.10−4 0,999 0,999

Table 5.1 – Accuracy Q2 and the RMSE error for Maximum Likelihood and Cross-Validation.
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One can notices that Cross-Validation method is more efficient in the case of Moon HD function
5.3 or Morris function 5.6. More generally, the Cross-Validation method is well adapted to model
mis-specifications i.e when the covariance of Y cannot be computed exactly with a covariance
function (See F. Bachoc [49]).

5.1.2 GP Building process : Sequential approach vs classical approach

Secondly, for high-dimensional functions which has a good Q2, we perform a HSIC-based screening
on inputs and build a joint GP model according to the sequential approach in 4.3. On the other
hand, we build a simple GP model including all inputs :

RMSE Joint GP RMSE Simple GP Q2 Joint GP Q2 Simple GP

Additive fun (d = 6) 0,467 0,465 0,969 0,966
Morokoff.fun (d = 10) 0,116 0,119 0,806 0,797
Sobol fun (d = 8) 0,181 0,429 0,917 0,534

Linkletter fun (d = 8) 1,76 10−6 2,27.10−6 0,999 0,999

Table 5.2 – Accuracy Q2 and RMSE obtained for Maximum Likelihood estimated GP model by
joint modeling (See step 4.3) vs simple GP model.

RMSE Joint GP RMSE Simple GP Q2 Joint GP Q2 Simple GP

Additive fun (d = 6) 0,406 0,406 0,975 0,975
Moon fun HD (d = 20) 3,314 3,212 0,804 0,791
Morokoff.fun (d = 10) 0,116 0,119 0,806 0,797

Table 5.3 – Accuracy Q2 and RMSE obtained for Cross-Validation GP model by joint modeling
(See step 4.3) vs simple GP model.

Obviously, the accuracy Q2 is improved between 0.3% to 38%. the higher is Q2, the less
significant the difference between the two models. Yet, the proposed methodology is still an
efficient and robust method to build GP models with a high-dimensional data.

Remark 12 Joint modeling by Cross-Validation estimator suffers from some computation prob-
lems (due to matrix inversion). reason why we don’t present the comparison’s results for Sobol and
Morris function.

5.1.3 Sensitivity analysis indices

In this subsection, we illustrate the sensitivity indices for some of the previous functions : Additive
function 5.1, Linkletter 5.7, G-sobol 5.7 and Testing function 5.9. We do not compute these indices
from the function itself, we use the optimal surrogate GP models, as shown in the previous section,
such that Q2 is close to one.

• Case of independent variables :

X = {X1, ..., Xd} are assumed to be independent variables sampled in a LHS Design of
Experiment. Sensitivity indices are computed and presented in figure 5.1 :

1. Some indices are estimated negatively, in particular first-order indices, in this case one
can conclude that these indices are equal to zero.

2. The most influent variables are those with low coefficient ai or expressed by a function
with high variations.
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3. Variance-based measures and HSIC rank influent variables similarly regardless to their
value for each input Xi (i.e. input’s influence ranking does not change from a measure
to another).

4. When the function is perfectly additive (e.g. Additive func 5.1 and Linkletter 5.7), the
equality of sensitivity indices Si = Shi = STi holds.

• Case of dependent variables :

X = {X1, ..., Xd} are no more assumed to be independent and we consider only the Testing
function.

1. ST3
=0 in all cases, this result is consistent with claim 1) in 2.2.2 : f(.) is a measurable

function of X1 and X2 but not X3.

2. - When X3, X2 ∼ U [0, 1], X1 =
1+X2

3

2 + ε, S3 > 0 which is also consistent with claim 2
in 2.2.2 : The contribution of X3 to the variance of Y is contained in the contribution
of X1.

3. - When X3 ∼ U [0, 1], X1 =
√
X3+X2

3

2 + ε and X2 =
X2

1+X3

2 + ε, HSIC gives a high
importance to X2 due to its strong dependence to X1 and X3.

4. - When X1, X2 ∼ U [0, 1] and X3 = sin(X1) + ε, HSICF,G captures the dependence
betweenX3 and Y throughX1 while Variance-based indices (Sh3 and S3) do not capture
any effect on Y .

The previous result is very interesting in sensitivity analyse / causal inference with dependent
variables : When Shi = 0 but SHSICF,GXi

6= 0 then Xi and Y are dependent mutually
of a variable controlling both of them (confounder).
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(a) Additive function

(b) Linkletter function

(c) Sobol-G function

(d) Testing function

Figure 5.1 – Sensitivity analysis with independent variables
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(a)

(b)

(c)

(d)

Figure 5.2 – Sensitivity analysis with dependant variable for Testing function
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5.2 Application to production data : UTICA Shale

5.2.1 Presentation

Reservoir engineers and experts seek to predict gas and oil well production of new/undiscovered
wells, not only from historical data of previous well but also from other well characteristics and
operational parameters. This will allow them to anticipate the economic performance of the well,
and also to better manage the supply chain of which it is a part.

5.2.2 Data description and exploratory analysis

Our data-set, field data, is derived from unconventional wells. It contains approximately 2700
wells with more than 120 variables, including localization, production time-series, exploitation
conditions and the associated geological data. However, Only a few variables are interesting to
us in this study: Production, localization, well characteristics and "Fracturing design" (see figure
5.3), the scatter plot of data-set is 5.12.

Figure 5.3 – Illustration of a well in reservoir : True Vertical Depth, Lateral Length and bottom
hole point

• Longitude_BH, Latitude_BH : Longitude and Latitude of bottom hole point (decimal
degrees).

• TrueVerticalDepth_FT : Total vertical depth to bottom of wellbore (feet).

• LateralLength_FT : Length of the horizontal drain (feet).

• ProppantIntensity_LBSPerFT, ProppantLoading_LBSPerGAL andProppant_LBS
: Characteristics of Proppant injected during completion (LBS)

• WaterIntensity_GALPerFT and TotalWaterPumped_GAL: Characteristics of Wa-
ter injected during completion (GAL)

• FluidIntensity_GALPerFT and TotalFluidPumped_GAL: Characteristics of Fluid
injected during completion (GAL)

• First12MonthProd_BOE : Production of Gas and Oil over 12 months (BOE) - variable
of interest to predict -

46



After removing Not-Available rows and extracting only interest variables, our data-set has
become composed of 12 variables and 1580 rows and standardized as described in 4.1.

The Principal Components Analysis (PCA) results shows that the first factorial plan, composed
of production and some "Fracturing design" as 1st axis, and localization variables as 2nd axis, rep-
resents approximately 60% of initial data, which not enough to represent it faithfully because 40%
of information are lost. Moreover, according to the correlation circle, First12MonthProd_BOE
is likely to be more correlated to Fracturing design, whereas TrueVerticalDepth_FT and Lateral-
Length_FT can be taken separately in the 3rd and 4th axis

Figure 5.4 – On the left : Correlation Circle of 1st factorial plan. On the right : Contribution of
each variable to factorial axis

Regarding screening inputs (Step 2 4.2) with HSIC, We identify TrueVerticalDepth_FT and
Latitude_BH as most influent variables while Longitude_BH and ProppantIntensity_LBSPerFT
are less influent.

Figure 5.5 – HSIC indices SHSICF,GXk
for Production inputs

HSICF,G exhibits also a high dependence between First12MonthProd_BOE and Fractur-
ing parameters as PCA correlation circle (see 5.4) who fails to identify the influence TrueVer-
ticalDepth_FT and Latitude_BH.
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5.2.3 Modeling Production with GP

Predicting the Production over 12 months

The data-set has been split to a training set of ntrain = 1100 observations and testing set of
ntest = 480 (corresponding to 75%-25% split).

Figure 5.6 – Evolution of model’s accuracy Q2 for each feature included at iteration jth

From the HSIC-Based screening (5.5) and build a joint GP model according to the sequential
approach in 4.3 to predict production Y = First12MonthProd_BOE for testing set, considered as
undiscovered wells, we build also a simple GP model including all inputs, for comparison purposes.
The covariance model chosen is an Radial model with a Matérn 3/2 kernel.

By examining the graph above (5.6) , we infer that :

• Firstly, the sequential joint modeling improve Q2 by 5% as long as the stochastic part due
to nugget effect is more important in our data-set.

• Secondly, the accuracy is increasing until the 5th iteration corresponding to LateralLength_FT
where it stagnates before increasing a little bit at Longitude_BH. The predictive model
GPpred is built using only 5 most influent variables (TrueVerticalDepth_FT to Lateral-
Length_FT ), the global model GPglobal is built using all inputs.

• Finally, Maximum Likelihood method seems to predict better Cross-Validation especially in
the first iterations.

Remark 13 The GP parameter’s estimator do not converge for TrueVerticalDepth_FT. We set
Q2 = 0 as a default accuracy.

Remark 14 In GPpred we lose 0.02 in accuracy Q2 but we reduce the complexity of them model
for hyper-parameters estimation by more than half.

In the following, we choose the default confidence level 1−α = 95% (i.e. α = 5%) and compare
the obtained kriging model with other ML algorithms, in particular Random Forest and Gradient
Boosting.
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(a) Maximum Likelihood GP model

(b) Cross-Validation GP model

(c) Random Forest

(d) XGBoost

Figure 5.7 – Comparison of different ML models accuracy and score
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Maximum Likelihood Cross-Validation Random Forest XGBoost

Computing time (s) 207.5 507.2 2.33 96.3

Table 5.4 – Computing time for different ML models

Clearly, the GP Models have approximately the same predictivity compared to XGBoost and
RandomForest. Furthermore, we quite underestimate First12MonthProd_BOE unlike XGBoost,
which underestimate real production heavily (less than 38% of predictions are inside IC95%) Ran-
dom Forest, which overestimates it (more than 99%). Still, in terms of complexity and computing
resources, the GP model is computationally expensive, and one would instead prefer using Random
Forest for building reliable models as it is much faster and more robust.

Figure 5.8 – Importance feature selection for XGBoost and Random Forest

From the importance feature ranking 5.8, it is interesting to see that both XGBoost and Random
Forest are exactly the same and that some features were ranked more important than those with
HSIC, in particular, Longitude_BH is ranked as 5th important variable, which also can explain
the slight increase in accuracy Q2 at step 10th (See 5.6).

The importance feature selection, as explained in remark 9, is useful for predictive modelling
purposes (but not for model explainability or sensitivity analysis). Unfortunately, it is inapplicable
in the case of GP models as it requires d! built models (iterations) to explore all possibilities and
pick the most important variables for Q2. However, we can serve us for importance feature selection
of the previous ML algorithms to build GPpred. Indeed, taking the five first important variables
by Random Forest or XGBoost and using MLE, we get Q2 = 0.88 for the new GPpred.

Uncertainty quantification : Estimating percentiles probability P90/P10

The definitions of rules P90/P10 of PRMS and SEC correspond in fact to confidence level 1− α =
80%. Since the purpose now is the estimate properly this two percentile, the GPpred and Cross-
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Validation Estimator are the main tool for. The predictions and associated Prediction’s intervals
of the GP scorepred are presented below in 5.9 :

(a) Training set

(b) Testing set

Figure 5.9 – Pscore1−0.20 obtained by LOO Cross-Validation

In both cases, the Pscore1−0.20 criterion is respected as much as possible even if the accuracy Q2

decreases a little bit. In particular, we obtain the empirical percentiles P̃10 = 1
2

(
1− Pscore1−0.20

)
'

9.54% and P̃90 = 1
2

(
1 + Pscore1−0.20

)
' 90.46% for the testing set
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5.2.4 Sensitivity indices

In the sensitivity analysis of the model, GPglobal is used despite its high dimension which makes
estimating Shapley values more difficult :

Figure 5.10 – Sensitivity analysis indices for UTICA Production data.

Concerning Sobol first-order and Shapley values, although Latitude_BH was ranked 2nd, its
contribution to the variance of the production is more important than other variables. In addition,
SLongitude_BH is small which means that it that its contribution alone to the production is also
small but when it is combined with other variables (e.g. Latitude_BH ), the contribution becomes
more important.

Remark 15 The "sandwich effect" of Sobol’s indices and Shapley values is also valid in our case
regardless of estimation’s error.

For Sobol total effects, all variables with STi ≈ 0 can be considered as not intervening in the
model Y = f(.). The model can be written then as :

First12MonthProd_BOE = f(TrueV erticalDepth_FT,Longitude_BH,Latitude_BH,
LateralLength_FT, TotalF luidPumped_BBL, TotalWaterPumped_GAL)

(5.10)
Note that these variables correspond to those ranked by Random Forest and XGBoost as most
important. They are variables representing the predictive part of the model Y = f(.)

Remark 16 When looking at scatter plot of Longitude_BH and First12MonthPro_BOE in 5.12,
we can observe that these two variables cannot be fitted alone to predict production, it could be a
reason why HSICF,G fails to rank them as influent variables.

When a GP model GP ∗ is built (Matén 3/2 kernel) by taking the less important variables :
WaterIntensity_GALPerFT to ProppantIntensity_LBSPerFT, the obtain accuracy is Q∗2 = 0.56.
That means the less important variables are still useful to gather information about production
and able to predict 56% of real production.

From 5.11, One can deduce that :

• ProppantLoading_LBSPerGAL do not affect production neither directly nor by its depen-
dencies, HSIC could be explained by a certain hidden variable affecting both of Proppant-
Loading_LBSPerGAL and First12MonthProd_BOE.
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• SProppantIntensity_LBSPerFT = SWaterIntensity_GALPerFT = 0 means that both of Proppant-
Loading_LBSPerGAL are affecting production only by their interactions/dependencies and
that their contribution to the variance of the model is null.

• In 5.10, HSIC measured some dependencies between WaterIntensity_GALPerFT, WaterIn-
tensity_GALPerFT and Proppant_LBS and First12MonthProd_BOE although other variance-
based indices have given them a very small value. These dependencies are detected now by
Sobol’s and Shapley indices when most important variables are taken out. However, we
are unable to interpret exactly the difference between HSIC and variance-based indices for
ProppantIntensity_LBSPerFT and ProppantLoading_LBSPeGAL (could be caused by the
imprecision of GP ∗ ? presence of a confounder? )

Figure 5.11 – Sensitivity analysis indices for remaining variables.
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Figure 5.12 – Scatter plot of Y =First12MonthProd_BOE for UTICA inputs; the blue lines design
the smooth mean of observed data
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Chapter 6

Conclusion

The general field of this master thesis was uncertainty quantification and sensitivity analysis. In
this conclusion, we give a brief summary of our work followed by a number of directions for future
research.

This thesis aimed to investigate the issue of uncertainty quantification for Oil & Gas production.
The purpose of this thesis is twofold, on the one hand, to present appropriate statistical methods
and procedures for analyzing inputs contribution and dealing with parameter uncertainty. On the
other hand, develop a predictive model in terms of accuracy and/or with respect to the SEC and
PRMS rules of percentiles P90/P10.

The two different concepts of sensitivity analysis measures have been presented in chapter 2,
both of them share the ability to study the contribution of inputs to the model uncertainty and
provide deeper insight into the output behaviour. However, in some cases, they remain inapplicable
as they suffer from many problems due mainly to the computational cost of these indices.

The Gaussian Processes GP, based on RKHS theory, have also shown their efficiency in mod-
elling data. Although being computationally expensive, they allow building high predictive models
with a well-founded framework for learning and model selection. In addition, the choice of ker-
nels and the robustness of the Gaussian Process make fitting the percentile P90/P10 possible by
hyper-parameters Cross-Validation estimating.

Finally, it would be necessary to explore and investigate new research topics further to expand
the findings of this thesis, in particular:

- Estimating Sobol’s indices and Shapley values when the model’s or surrogate model’s accuracy
is low: As mentioned in section 2.4, estimating these indices requires conditioning on a variable Xi,
when the surrogate model f̂(.) is poor, they are estimated imprecisely. In addition, the hardness
of conditional testing (peters may make computing Shapley values from data more challenging.

- Interpreting HSIC measure between Xk and the output : In some cases (See 5.1.3 and 5.2.4),
S
HSICF,G
Xk

indicates a non-null value meaning that Xk and Y are dependent somehow, this is insuf-
ficient to decide whether Xk appears in the model Y = f(.) or not even through its dependencies
with other inputs.

- Multivariate HSIC measure: It could be interesting to exhibit the HSIC not only between two
vectors but in the multivariate case between Y and set of vectors XJ where J ⊆ N to understand
better dependencies between Xk ∈ XJ and Y

- Choice of kernels in HSIC: In the original HSIC papers [11], and [35], we show that HSIC
depends on the universal kernels F ,G and the Gaussian kernel was chosen. However, there is no
theoretical justification for this choice. The impact of kernels must be studied to see if HSIC is
stable or not.
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